• Advanced Photonics
  • Vol. 4, Issue 4, 046006 (2022)
Xin Ye1、2, Xiao Qian1、2, Yuxin Chen1、2, Rui Yuan1, Xingjian Xiao1、2, Chen Chen1、2, Wei Hu1, Chunyu Huang1, Shining Zhu1、2, and Tao Li1、2、*
Author Affiliations
  • 1Nanjing University, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Integration, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing, China
  • 2Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
  • show less
    DOI: 10.1117/1.AP.4.4.046006 Cite this Article Set citation alerts
    Xin Ye, Xiao Qian, Yuxin Chen, Rui Yuan, Xingjian Xiao, Chen Chen, Wei Hu, Chunyu Huang, Shining Zhu, Tao Li. Chip-scale metalens microscope for wide-field and depth-of-field imaging[J]. Advanced Photonics, 2022, 4(4): 046006 Copy Citation Text show less
    References

    [1] Ø. I. Helle et al. Structured illumination microscopy using a photonic chip. Nat. Photonics, 14, 431-438(2020).

    [2] A. Archetti et al. Waveguide-PAINT offers an open platform for large field-of-view super-resolution imaging. Nat. Commun., 10, 1267(2019).

    [3] T.-W. Su, L. Xue, A. Ozcan. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc. Natl. Acad. Sci. U. S. A., 109, 16018-16022(2012).

    [4] X. Liu et al. Fluorescent nanowire ring illumination for wide-field far-field subdiffraction imaging. Phys. Rev. Lett., 118, 076101(2017).

    [5] G. Zheng, R. Horstmeyer, C. Yang. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics, 7, 739-745(2013).

    [6] K. C. Lee et al. A smartphone-based Fourier ptychographic microscope using the display screen for illumination. ACS Photonics, 8, 1307-1315(2021).

    [7] W. J. Smith. Modern Lens Design(2004).

    [8] H. Gross, F. Blechinger, B. Achtner. Handbook of Optical Systems(2005).

    [9] D. C. O’Shea et al. Diffractive Optics: Design, Fabrication, and Test(2003).

    [10] G. Jin et al. Lens-free shadow image based high-throughput continuous cell monitoring technique. Biosens. Bioelectron., 38, 126-131(2012).

    [11] A. C. Sobieranski et al. Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution. Light Sci. Appl., 4, e346(2015).

    [12] A. Ozcan, E. McLeod. Lensless imaging and sensing. Annu. Rev. Biomed. Eng., 18, 77-102(2016).

    [13] M. Khorasaninejad et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [14] W. T. Chen, A. Y. Zhu, F. Capasso. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater., 5, 604-620(2020).

    [15] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [16] L. Huang et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett., 12, 5750-5755(2012).

    [17] S. Sun et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett., 12, 6223-6229(2012).

    [18] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [19] A. Arbabi et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [20] S. M. Kamali et al. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 7, 1041-1068(2018).

    [21] H. Wang et al. Independent phase manipulation of co- and cross- polarizations with all-dielectric metasurface. Chin. Opt. Lett., 19, 053601(2021).

    [22] J. Li et al. Dual-band independent phase control based on high efficiency metasurface. Chin. Opt. Lett., 19, 100501(2021).

    [23] M. Khorasaninejad, F. Capasso. Metalenses: versatile multifunctional photonic components. Science, 358, eaam8100(2017).

    [24] M. Faraji-Dana et al. Compact folded metasurface spectrometer. Nat. Commun., 9, 4196(2018).

    [25] E. Arbabi et al. Full-Stokes imaging polarimetry using dielectric metasurfaces. ACS Photonics, 5, 3132-3140(2018).

    [26] Y. Zhou et al. Flat optics for image differentiation. Nat. Photonics, 14, 316-323(2020).

    [27] C. Chen et al. Highly efficient metasurface quarter-wave plate with wave front engineering. Adv. Photonics Res., 2, 2000154(2021).

    [28] M. Miyata et al. Full-color-sorting metalenses for high-sensitivity image sensors. Optica, 8, 1596-1604(2021).

    [29] A. Arbabi et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun., 7, 13682(2016).

    [30] S. Wang et al. Broadband achromatic optical metasurface devices. Nat. Commun., 8, 187(2017).

    [31] E. Arbabi et al. MEMS-tunable dielectric metasurface lens. Nat. Commun., 9, 812(2018).

    [32] C. Chen et al. Spectral tomographic imaging with aplanatic metalens. Light Sci. Appl., 8, 99(2019).

    [33] R. J. Lin et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol., 14, 227-231(2019).

    [34] H. Kwon et al. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photonics, 14, 109-114(2020).

    [35] N. A. Rubin et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science, 365, eaax1839(2019).

    [36] B. Xu et al. Metalens-integrated compact imaging devices for wide-field microscopy. Adv. Photonics, 2, 066004(2020).

    [37] J. Engelberg et al. Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications. Nanophotonics, 9, 361-370(2020).

    [38] T. Li. New opportunities for metalenses in imaging applications. Sci. China Phys. Mech. Astron., 63, 284231(2020).

    [39] Y. Liu et al. Meta-objective with sub-micrometer resolution for microendoscopes. Photonics Res., 9, 106-115(2021).

    [40] Y. Wang et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun., 12, 5560(2021).

    [41] E. Tseng et al. Neural nano-optics for high-quality thin lens imaging. Nat. Commun., 12, 6493(2021).

    [42] X. Luo et al. Recent advances of wide-angle metalenses: principle, design, and applications. Nanophotonics, 11, 1-20(2022).

    [43] L. Li et al. Chromatic dispersion manipulation based on metasurface devices in the mid-infrared region. Chin. Opt. Lett., 18, 082401(2020).

    [44] J. W. Goodman. Introduction to Fourier Optics(2005).

    [45] S. D. Alaruri. Calculating the modulation transfer function of an optical imaging system incorporating a digital camera from slanted-edge images captured under variable illumination levels: Fourier transforms application using MATLAB. Optik, 127, 5820-5824(2016).

    [46] L. Nikolova, P. S. Ramanujam. Polarization Holography(2009).

    Xin Ye, Xiao Qian, Yuxin Chen, Rui Yuan, Xingjian Xiao, Chen Chen, Wei Hu, Chunyu Huang, Shining Zhu, Tao Li. Chip-scale metalens microscope for wide-field and depth-of-field imaging[J]. Advanced Photonics, 2022, 4(4): 046006
    Download Citation