• Photonic Sensors
  • Vol. 11, Issue 4, 418 (2021)
Guo ZHU1, Lokendra SINGH1、2, Yu WANG1, Ragini SINGH3, Bingyuan ZHANG1、*, Fengzhen LIU4, Brajesh Kumar KAUSHIK1、5, and Santosh KUMAR1、5、6
Author Affiliations
  • 1Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
  • 2Department of Robotics and Automation Engineering, PARK College of Engineering and Technology, Kaniyur 641659, India
  • 3School of Agriculture Science, Liaocheng University, Liaocheng 252059, China
  • 4Liaocheng People’s Hospital, Medical College of Liaocheng University, Liaocheng 252000, China
  • 5Department of Electronics and Communication Engineering, Indian Institute of Technology-Roorkee, Roorkee 247667, India
  • 6Department of Electrical and Electronics & Communication Engineering, DIT University, Dehradun 248009, India
  • show less
    DOI: 10.1007/s13320-020-0605-2 Cite this Article
    Guo ZHU, Lokendra SINGH, Yu WANG, Ragini SINGH, Bingyuan ZHANG, Fengzhen LIU, Brajesh Kumar KAUSHIK, Santosh KUMAR. Tapered Optical Fiber-Based LSPR Biosensor for Ascorbic Acid Detection[J]. Photonic Sensors, 2021, 11(4): 418 Copy Citation Text show less
    References

    [1] J. F. Turrens, “Mitochondrial formation of reactive oxygen species,” The Journal of Physiology, 2003, 552(2): 335–344.

    [2] L. Jiang, K. Yang, J. Tian, Q. Guan, N. Yao, N. Cao, et al., “Efficacy of antioxidant vitamins and selenium supplement in prostate cancer prevention: a meta-analysis of randomized controlled trials,” Nutrition and Cancer, 2010, 62(6): 719–727.

    [3] M. Levine, S. C. Rumsey, R. Daruwala, J. B. Park, and Y. Wang, “Criteria and recommendations for vitamin C intake,” The Journal of the American Medical Association, 1999, 281(15): 1415–1423.

    [4] D. T. Alexandrescu, C. A. Dasanu, and C. L. Kauffman, “Acute scurvy during treatment with interleukin-2,” Clinical and Experimental Dermatology: Clinical Dermatology, 2009, 34(7): 811–814.

    [5] M. T. Heafield, S. Fearn, G. B. Steventon, R. H. Waring, A. C. Williams, and S. G. Sturman, “Plasma cysteine and sulphate levels in patients with motor neurone, Parkinson’s and Alzheimer’s disease,” Neuroscience Letters, 1990, 110(1–2): 216–220.

    [6] S. J. Padayatty, A. Katz, Y. Wang, P. Eck, O. Kwon, J. Lee, et al., “Vitamin C as an antioxidant: evaluation of its role in disease prevention,” Journal of the American College of Nutrition, 2003, 22(1): 18–35.

    [7] K. Matsumoto, K. Yamada, and Y. Osajima, “Ascorbate electrode for determination of L-ascorbic acid in food,” Analytical Chemistry, 1981, 53(13): 1974–1979.

    [8] S. -evik, O. Akpolat, and ü. Anik, “Ascorbic acid detection with MnO2-modified GCPE,” Food Analytical Methods, 2016, 9(2): 500–504.

    [9] J. Liu, Y. Chen, W. Wang, J. Feng, M. Liang, S. Ma, et al., “ ‘Switch-On’ fluorescent sensing of ascorbic acid in food samples based on carbon quantum dots-MnO2 probe,” Journal of Agricultural and Food Chemistry, 2016, 64(1): 371–380.

    [10] W. J. Ni, D. Shan, R. H. Zhu, S. Y. Deng, S. Cosnier, and X. J. Zhang, “Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium (II) ions and l-ascorbic acid,” Carbon, 2016, 96: 1034–1042.

    [11] J. Chen, J. Ge, L. Zhang, Z. Li, J. Li, Y. Sun, et al., “Reduced graphene oxide nanosheets functionalized with poly (styrene sulfonate) as a peroxidase mimetic in a colorimetric assay for ascorbic acid,” Microchimica Acta, 2016, 183(6): 1847–1853.

    [12] D. R. S. Lima, M. Cossenza, C. G. Garcia, C. C. Portugal, F. F. de C. Marques, R. Paes-de-Carvalho, et al., “Determination of ascorbic acid in the retina during chicken embryo development using high performance liquid chromatography and UV detection,” Analytical Methods, 2016, 8(27): 5441–5447.

    [13] S. Zang, S. Tian, J. Jiang, D. Han, X. Yu, K. Wang, et al., “Determination of antioxidant capacity of diverse fruits by electron spin resonance (ESR) and UV–vis spectrometries,” Food Chemistry, 2017, 221: 1221–1225.

    [14] I. Biran, X. Yu, and D. R. Walt, Optical biosensors: Chapter 1 – optrode-based fiber optic biosensors (bio-optrode) (Second edition). Amsterdam: Elsevier, 2008: 3–82.

    [15] A. B. Socorro, E. Santamaría, J. F. Irigoyen, I. D. Villar, J. M. Corres, F. J. Arregui, et al., “Fiber-optic immunosensor based on an etched SMS structure,” IEEE Journal of Selected Topics in Quantum Electronics, 2016, 23(2): 314–321.

    [16] S. Kumar, B. K. Kaushik, R. Singh, N. K. Chen, Q. S. Yang, X. Zhang, et al., “LSPR-based cholesterol biosensor using a tapered optical fiber structure,” Biomedical Optics Express, 2019, 10(5): 2150–2160.

    [17] K. Li, G. Liu, Y. Wu, P. Hao, W. Zhou, and Z. Zhang, “Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum,” Talanta, 2014, 120: 419–424.

    [18] Y. Li, H. Ma, L. Gan, Q. Liu, Z. Yan, D. Liu, et al., “Immobilized optical fiber microprobe for selective and high sensitive glucose detection,” Sensors and Actuators B: Chemical, 2018, 255: 3004–3010.

    [19] N. M. Y. Zhang, M. Qi, Z. Wang, Z. Wang, M. Chen, K. Li, et al., “One-step synthesis of cyclodextrin-capped gold nanoparticles for ultra-sensitive and highly-integrated plasmonic biosensors,” Sensors and Actuators B: Chemical, 2019, 286: 429–436.

    [20] G. Zheng, Y. Liu, L. Shi, R. Zhao, and T. Wang, “Reflective index sensors based on tilted fiber Bragg grating inscribed in the thin-core fiber,” in 2016 15th International Conference on Optical Communications and Networks (ICOCN), China, Sept. 24–27, 2016, pp. 1–3.

    [21] M. Batumalay, S. W. Harun, F. Ahmad, R. M. Nor, N. R. Zulkepely, and H. Ahmad, “Tapered plastic optical fiber coated with graphene for uric acid detection,” IEEE Sensors Journal, 2014, 14(5): 1704–1709.

    [22] L. Singh, G. Zhu, R. Singh, B. Zhang, W. Wang, B. K. Kaushik, et al., “Gold nanoparticles and uricase functionalized tapered fiber sensor for uric acid detection,” IEEE Sensors Journal, 2019, 20(1): 219–226.

    [23] C. T. Lee, M. L. Wu, L. G. Sheu, P. L. Fan, and J. M. Hsu, “Design and analysis of completely adiabatic tapered waveguides by conformal mapping,” Journal of Lightwave Technology, 1997, 15(2): 403–410.

    [24] J. L. Hammond, N. Bhalla, S. D. Rafiee, and P. Estrela, “Localized surface plasmon resonance as a biosensing platform for developing countries,” Biosensors (Basel), 2014, 4(2): 172–188.

    [25] A. K. Sharma, J. Gupta, and I. Sharma, “Fiber optic evanescent wave absorption-based sensors: a detailed review of advancements in the last decade (2007-18),” Optik, 2019, 183: 1008–1025.

    [26] X. Guo, “Surface plasmon resonance-based biosensor technique: a review,” Journal of Biophotonics, 2012, 5(7): 483–501.

    [27] J. Turkevich, P. C. Stevenson, and J. Hillier, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discussions of the Faraday Society, 1951, 11: 55–75.

    [28] H. M. Kim, D. H. Jeong, H. Y. Lee, J. H. Park, and S. K. Lee, “Improved stability of gold nanoparticles on the optical fiber and their application to refractive index sensor based on localized surface plasmon resonance,” Optics & Laser Technology, 2019, 114: 171–178.

    [29] I. Arghir, D. Spasic, B. E.Verlinden, F. Delport, and J. Lammertyn, “Improved surface plasmon resonance biosensing using silanized optical fibers,” Sensors and Actuators B: Chemical, 2015, 216: 518–526.

    [30] S. Aza, E. Sadeghi, R. Parvizi, A. Mazaheri, and M. Yousefi, “Sensitivity optimization of ZnO clad-modified optical fiber humidity sensor by means of tuning the optical fiber waist diameter,” Optics & Laser Technology, 2017, 90: 96–101.

    [31] L. Coelho, D. Viegas, J. L. Santos, and J. D. Almeida, “Characterization of zinc oxide coated optical fiber long period gratings with improved refractive index sensing properties,” Sensors and Actuators B: Chemical, 2016, 223: 45–51.

    [32] F. Qu, H. Lu, M. Yang, and C. Deng, “Electrochemical immunosensor based on electron transfer mediated by graphene oxide initiated silver enhancement,” Biosensors and Bioelectronics, 2011, 26(12): 4810–4814.

    [33] N. EllinaAzmi, A. H. A. Rashid, J. Abdullah, N. A.Yusof, and H. Sidek, “Fluorescence biosensor based on encapsulated quantum dots/enzymes/sol-gel for non-invasive detection of uric acid,” Journal of Luminescence, 2018, 202: 309–315.

    [34] A. M. Shrivastav, S. K. Mishra, and B. D. Gupta, “Surface plasmon resonance-based fiber optic sensor for the detection of ascorbic acid utilizing molecularly imprinted polyaniline film,” Plasmonics, 2015, 10(6): 1853–1861.

    [35] G. K. Schwalfenberg, “The alkaline diet: is there evidence that an alkaline pH diet benefits health-,” Journal of Environmental and Public Health, 2012, 2012: 727630.

    [36] Z. Samavati, A. Samavati, A. F. Ismail, M. H. D. Othman, and M. A. Rahman, “Comprehensive investigation of evanescent wave optical fiber refractive index sensor coated with ZnO nanoparticles,” Optical Fiber Technology, 2019, 52: 101976.

    [37] R. Kant and B. D. Gupta, “Fiber-optic SPR based acetylcholine biosensor using enzyme functionalized Ta2O5 nanoflakes for alzheimer’s disease diagnosis,” Journal of Lightwave Technology, 2018, 36(18): 4018–4024.

    [38] J. Villatoro and D. Monzon-Hernandez, “Low-cost optical fiber refractive-index sensor based on core diameter mismatch,” Journal of Lightwave Technology, 2006, 24(3): 1409–1413.

    [39] Y. Song, C. Gong, D. Su, Y. Shen, Y. Song, and L. Wang, “A novel ascorbic acid electrochemical sensor based on spherical MOF-5 arrayed on a three-dimensional porous carbon electrode,” Analytical Methods, 2016, 8(10): 2290–2296.

    [40] J. Chen, J. Ge, L. Zhang, Z. Li, J. Li, Y. Sun, et al., “Reduced graphene oxide nanosheets functionalized with poly (styrene sulfonate) as a peroxidase mimetic in a colorimetric assay for ascorbic acid,” Microchimica Acta, 2016, 183(6): 1847–1853.

    [41] H. Meng, D. Yang, Y. Tu, and J. Yan, “Turn-on fluorescence detection of ascorbic acid with gold nanolcusters,” Talanta, 2017, 165: 346–350.

    [42] C. Mu, H. Lu, J. Bao, and Q. Zhang, “Visual colorimetric ‘turn-off’ biosensor for ascorbic acid detection based on hypochlorite–3,3′,5,5′,-Tetramethylbenzidine system,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 201: 61–66.

    Guo ZHU, Lokendra SINGH, Yu WANG, Ragini SINGH, Bingyuan ZHANG, Fengzhen LIU, Brajesh Kumar KAUSHIK, Santosh KUMAR. Tapered Optical Fiber-Based LSPR Biosensor for Ascorbic Acid Detection[J]. Photonic Sensors, 2021, 11(4): 418
    Download Citation