• Laser & Optoelectronics Progress
  • Vol. 55, Issue 7, 71203 (2018)
Shao Shanchuan1、2, Tao Xiaoping1, and Wang Xiaokun1、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/lop55.071203 Cite this Article Set citation alerts
    Shao Shanchuan, Tao Xiaoping, Wang Xiaokun. On-Machine Surface Shape Measurement of Reflective Mirrors by Ultra-Precision Turning Based on Fringe Reflection[J]. Laser & Optoelectronics Progress, 2018, 55(7): 71203 Copy Citation Text show less
    References

    [1] Kang Z, Nie F M, Liu J S, et al. Research on single point diamond precision numerical control turning technique and its development[J]. Optical Technique, 2010, 36(2): 163-167.

    [2] Wang Y H, Su P, Parks R E, et al. Swing arm optical coordinate-measuring machine: High precision measuring ground aspheric surfaces using a laser triangulation probe[J]. Optical Engineering, 2012, 51(7): 073603.

    [3] Ding S W, Zhang X H, Yu Q F, et al. Overview of non-contact 3D reconstruction measurement methods[J]. Laser & Optoelectronics Progress, 2017, 54(7): 070003.

    [4] Xiao Y L, Xue J P, Su X Y. Robust self-calibration three-dimensional shape measurement in fringe-projection photogrammetry[J]. Optics Letters, 2013, 38(5): 694-696.

    [5] Bothe T, Li W S, von Kopylow C, et al. High-resolution 3D shape measurement on specular surfaces by fringe reflection[J]. Proceedings of SPIE, 2004, 5457: 411-422.

    [6] Su P, Parks R E, Wang L R, et al. Software configurable optical test system: A computerized reverse Hartmann test[J]. Applied Optics, 2010, 49(23): 4404-4412.

    [7] Huang R, Su P, Horne T, et al. Optical metrology of a large deformable aspherical mirror using software configurable optical test system[J]. Optical Engineering, 2014, 53(8): 085106.

    [8] Su P, Khreishi M A H, Su T, et al. Aspheric and freeform surfaces metrology with software configurable optical test system: A computerized reverse Hartmann test[J]. Optical Engineering, 2014, 53(3): 031305.

    [9] Zhao W C, Fan B, Wu F, et al. Experimental analysis of reflector test based on phase measuring deflectometry[J]. Acta Optica Sinica, 2013, 33(1): 0112001.

    [10] Tang Y, Su X Y, Hu S. Measurement based on fringe reflection for testing aspheric optical axis precisely and flexibly[J]. Applied Optics, 2011, 50(31): 5944-5948.

    [11] Tang Y, Su X Y, Liu Y K, et al. Three-dimensional shape measurement of aspheric mirror based on fringe reflection[J]. Acta Optica Sinica, 2009, 29(4): 965-969.

    [12] Zhu R G, Zhu R H, Song Q, et al. Specular surface measurement based on fringe reflection and study on 3D shape reconstruction technique[J]. Proceedings of SPIE, 2013, 8769: 87692S.

    [13] Zhang Y B, Tang J, Yang D G. Detection of defects on a shining-metal surface using reflective fringe pattern[J]. Metrology & Measurement Technology, 2013, 33(s1): 100-102.

    [14] Song Y H, Wang Z, Fu L H, et al. Detection of surface defect on highly reflective curved surface using reflective fringe pattern[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(8): 1250-1254.

    [15] Zhang J P, Zhang X J, Zhang Z Y, et al. Test of rotationally symmetric aspheric surface using Shack-Hartmann wavefront sensor[J]. Optics and Precision Engineering, 2012, 20(3): 492-499.

    [16] Su P, Parks R E, Wang L, et al. Software configurable optical test system: A computerized reverse Hartmann test[J]. Applied Optics, 2010, 49(23): 4404-4412.

    [17] Yuan T. Study on fringe-reflection optical surface shape measurement technology for large aspheric mirror[D]. Beijing: University of Chinese Academy of Sciences, 2016: 28.

    [18] Hu E Y, He Y M, Chen Y M. Study on a novel phase-recovering algorithm for partial intensity saturation in digital projection grating phase-shifting profilometry[J]. Optik-International Journal for Light and Electron Optics, 2010, 121(1): 23-28.

    [19] Malacara D. Optical shop testing[M]. New York: John Wiley & Sons, 2007.

    [20] Southwell W H. Wave-front estimation from wave-front slope measurements[J]. Journal of Optical Society of America, 1980, 70(8): 998-1006.

    [21] Wu Y X, Yang M, Pang Z P, et al. Structure of fringe reflection technique with low phase ambiguous error[J]. Journal of Applied Optics, 2017, 38(4): 575-580.

    [22] Zhang Z Y. A flexible new technique for camera calibration[J]. IEEE Transactions on pattern analysis and machine intelligence, 2000, 22(11): 1330-1334.

    [23] Yuan T, Zhang F, Tao X P, et al. Three-dimensional shape measuring for specular surface based on phase measuring deflectometry[J]. Acta Optica Sinica, 2016, 36(2): 0212004.

    [24] Li C, Zhang X, Tu D W, et al. Deflectometry measurement method of single-camera monitoring[J]. Acta Optica Sinica, 2017, 37(10): 1012007.

    [25] Burge J H, Su P, Zhao C, et al. Use of a commercial laser tracker for optical alignment[J]. Proceedings of SPIE, 2007, 6676: 66760E.

    [26] Liu L, Chen X D, Xiong L, et al. Angle error investigation in laser tracker testing large aspheric mirrors[J]. Chinese Journal of Lasers, 2016, 43(11): 1104003.

    [27] Yue H M, Li R, Pan Z P, et al. High quality fringe patterns captured from phase measuring deflectometry[J]. Acta Optica Sinica, 2017, 37(11): 1112004.

    [28] Ji Y, Zhang X J, Yuan T, et al. Deflectometry measurement system for smart mobile devices[J]. Chinese Optics, 2017, 10(2): 267-279.

    [29] Zhao C, Burge J H. Orthonormal vector polynomials in a unit circle, Part I: Basis set derived from gradients of Zernike polynomials[J]. Optics Express, 2007, 15(26): 18014-18024.

    Shao Shanchuan, Tao Xiaoping, Wang Xiaokun. On-Machine Surface Shape Measurement of Reflective Mirrors by Ultra-Precision Turning Based on Fringe Reflection[J]. Laser & Optoelectronics Progress, 2018, 55(7): 71203
    Download Citation