• Advanced Photonics
  • Vol. 2, Issue 3, 036001 (2020)
Wange Song1、2, Hanmeng Li1、2, Shenglun Gao1、2, Chen Chen1、2, Shining Zhu1、2, and Tao Li1、2、*
Author Affiliations
  • 1Nanjing University, College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Integration, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing, China
  • 2Collaborative Innovation Center of Advanced Microstructures, Nanjing, China
  • show less
    DOI: 10.1117/1.AP.2.3.036001 Cite this Article Set citation alerts
    Wange Song, Hanmeng Li, Shenglun Gao, Chen Chen, Shining Zhu, Tao Li. Subwavelength self-imaging in cascaded waveguide arrays[J]. Advanced Photonics, 2020, 2(3): 036001 Copy Citation Text show less
    References

    [1] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966-3969(2000).

    [2] M. C. K. Wiltshire et al. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science, 291, 849-851(2001).

    [3] R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).

    [4] A. Grbic, G. V. Eleftheriades. Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett., 92, 117403(2004).

    [5] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 305, 788-792(2004).

    [6] N. Fang et al. Sub–diffraction-limited optical imaging with a silver superlens. Science, 308, 534-537(2005).

    [7] W. Denk, J. Strickler, W. Webb. Two-photon laser scanning fluorescence microscopy. Science, 248, 73-76(1990).

    [8] S. W. Hell, J. Wichmann. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett., 19, 780-782(1994).

    [9] J. W. Lichtman, J.-A. Conchello. Fluorescence microscopy. Nat. Meth., 2, 910-919(2005).

    [10] B. Huang, M. Bates, X. Zhuang. Super-resolution fluorescence microscopy. Ann. Rev. Biochem., 78, 993-1016(2009).

    [11] M. G. L. Gustafsson. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc., 198, 82-87(2000).

    [12] L. Schermelleh et al. Sub-diffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science, 320, 1332-1336(2008).

    [13] R. Fiolka et al. Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proc. Natl. Acad. Sci. U. S. A., 109, 5311-5315(2012).

    [14] D. R. Smith, D. Schurig. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. Phys. Rev. Lett., 90, 077405(2003).

    [15] A. Poddubny et al. Hyperbolic metamaterials. Nat. Photonics, 7, 948-957(2013).

    [16] J. Yao et al. Optical negative refraction in bulk metamaterials of nanowires. Science, 321, 930(2008).

    [17] I. I. Smolyaninov, Y.-J. Hung, C. C. Davis. Magnifying superlens in the visible frequency range. Science, 315, 1699-1701(2007).

    [18] Z. Liu et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 315, 1686(2007).

    [19] J. Rho et al. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. Nat. Commun., 1, 143(2010).

    [20] D. N. Christodoulides, F. Lederer, Y. Silberberg. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature, 424, 817-823(2003).

    [21] L. Verslegers et al. Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array. Phys. Rev. Lett., 103, 033902(2009).

    [22] Y. Liu, X. Zhang. Metasurfaces for manipulating surface plasmons. Appl. Phys. Lett., 103, 141101(2013).

    [23] E. Verhagen. Three-dimensional negative index of refraction at optical frequencies by coupling plasmonic waveguides. Phys. Rev. Lett., 105, 223901(2012).

    [24] U. Peschel, T. Pertsch, F. Lederer. Optical Bloch oscillations in waveguide arrays. Opt. Lett., 23, 1701-1703(1998).

    [25] R. Iwanow et al. Discrete Talbot effect in waveguide arrays. Phys. Rev. Lett., 95, 053902(2005).

    [26] S. Longhi et al. Observation of dynamic localization in periodically curved waveguide arrays. Phys. Rev. Lett., 96, 243901(2006).

    [27] S. Longhi. Image reconstruction in segmented waveguide arrays. Opt. Lett., 33, 473-475(2008).

    [28] A. Szameit et al. Image reconstruction in segmented femtosecond laser-written waveguide arrays. Appl. Phys. Lett., 93, 181109(2008).

    [29] A. Szameit et al. Inhibition of light tunneling in waveguide arrays. Phys. Rev. Lett., 102, 153901(2009).

    [30] W. Song et al. Breakup and recovery of topological zero modes in finite non-Hermitian optical lattices. Phys. Rev. Lett., 123, 165701(2019).

    [31] B. Xu, T. Li, S. Zhu. Simulation of massless Dirac dynamics in plasmonic waveguide arrays. Opt. Express, 26, 13416-13424(2018).

    [32] S. Longhi. Quantum-optical analogies using photonic structures. Laser Photonics Rev., 3, 243-261(2008).

    [33] J. M. Zeuner et al. Optical analogues for massless Dirac particles and conical diffraction in one dimension. Phys. Rev. Lett., 109, 023602(2012).

    [34] W. Song et al. High-density waveguide superlattices with low crosstalk. Nat. Commun., 6, 7027(2015).

    [35] R. Gatdula et al. Guiding light in bent waveguide superlattices with low crosstalk. Optica, 6, 585-591(2019).

    [36] Z. Liu et al. Focusing surface plasmons with a plasmonic lens. Nano Lett., 5, 1726-1729(2005).

    [37] D. Lu, Z. Liu. Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun., 3, 1205(2012).

    CLP Journals

    [1] Hua Zhong, Shiqi Xia, Yiqi Zhang, Yongdong Li, Daohong Song, Chunliang Liu, Zhigang Chen. Nonlinear topological valley Hall edge states arising from type-II Dirac cones[J]. Advanced Photonics, 2021, 3(5): 056001

    Wange Song, Hanmeng Li, Shenglun Gao, Chen Chen, Shining Zhu, Tao Li. Subwavelength self-imaging in cascaded waveguide arrays[J]. Advanced Photonics, 2020, 2(3): 036001
    Download Citation