• Photonic Sensors
  • Vol. 1, Issue 2, 102 (2011)
[in Chinese]* and [in Chinese]
Author Affiliations
  • Fiber Optics Group, Physics Department, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
  • show less
    DOI: 10.1007/s13320-011-0026-3 Cite this Article
    [in Chinese], [in Chinese]. Recent Progress in Optical Fiber Sensors Based on Brillouin Scattering at University of Ottawa[J]. Photonic Sensors, 2011, 1(2): 102 Copy Citation Text show less
    References

    [1] D. Culverhouse, F. Frahi, C. N. Pannell, and D. A. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensor,” Elect. Lett., vol. 25, no. 14, pp. 913-915, 1989.

    [2] T. Horiguchi, T. Kurashima, and M. Tateda, “Tensile strain of Brillouin frequency shift in silica optical fibers,” Photon. Tech. Lett., vol. 1, no. 5, pp. 107-108, 1989.

    [3] X. Bao, D. J. Webb, and D. A. Jackson, “22 km distributed temperature sensor using Brillouin gain in an optical fiber,” Opt. Lett., vo. 18, no. 7, pp. 552-554, 1993.

    [4] T. Horiguchi and T. Tateda, “BOTDA-nondestructive measurement of single-mode optical fibers attenuation characteristics using Brillouin interaction: theory,” IEEE J. Lightwave Technol., vol. 7, no. 8, pp. 1170-1176, 1989.

    [5] M. Nikles, L. Thevenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett., vol. 21, no. 10, pp. 758-760, 1996.

    [6] X. Bao, D. J. Webb, and D. A. Jackson, “32 km distributed temperature sensor based on Brillouin loss in an optical fiber,” Opt. Lett., vol. 18, no. 18, pp. 1561-1563, 1993.

    [7] X. Bao, D. J. Webb, and D. A. Jackson, “Combined distributed temperature and strain sensor based on Brillouin loss in an optical fiber,” Opt. Lett., vol. 19, no. 2, pp. 141-143, 1994.

    [8] X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” IEEE J. Lightwave Technol., vol. 13, no. 7, pp. 1340-1348, 1995.

    [9] K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne detection of spontaneously Brillouin-scattered light waves in a single-mode fiber,” Opt. Lett., vol. 18, no. 3, pp. 185-187, 1993.

    [10] T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett., vol. 22, no. 11, pp. 787-789, 1997.

    [11] S. M. Maughan, H. H. Kee, and T. P. Newson, “57 km single ended spontaneous Brillouin-based distributed fiber temperature sensor using microwave coherent detection,” Opt. Lett., vol. 26, no. 6, pp. 331-333, 2001.

    [12] X. Bao, A. Brown, M. DeMerchant, and J. Smith, “Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10 ns) pulses,” Opt. Lett., vol. 24, no. 8, pp. 510-512, 1999.

    [13] V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, “Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time,” Opt. Lett., vol. 25, no. 3, pp. 156-158, 2000.

    [14] S. Afshar, G. Ferrier, X. Bao, and L. Chen, “The impact of finite extinction ratio of EOM on the performance of the pump-probe Brillouin sensor system,” Opt. Lett., vol. 28, no. 16, pp. 1418-1420, 2003.

    [15] L. Zou, X. Bao, Y. Wan, and L. Chen, “Coherent pump-probe based Brillouin sensor for 1 cm crack detection,” Opt. Lett., vol. 30, no. 4, pp. 370-372, 2005.

    [16] V. P. Kalosha, E. Ponomarev, L. Chen, and X. Bao, “How to obtain high spectral resolution of SBS-based distributed sensing by using nanosecond pulses,” Opt. Express, vol. 14, no. 6, pp. 2071-2078, 2006.

    [17] T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” IEEE J. Lightwave Technol., vol. 13, no. 7, pp. 1296-1302, 1995.

    [18] K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber with a high spatial resolution using a novel correlation-based technique — demonstration of 45 cm spatial resolution,” in 12th International conference on OFS’97 — Optical Fiber Sensors, Williamsburg, OSA Technical Digest Series, vol. 16, pp. 337-340, 1997.

    [19] K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber with a high spatial resolution using a correlation-based technique— proposal, experiment and simulation,” IEICE Trans. Electron., vol. E83-C, no. 3, pp. 405-411, 2000.

    [20] W. Li, X. Bao, Y. Li, and L. Chen, “Different pulse-width pair Brillouin optical time domain analysis (DPP-BOTDR) for high spatial resolution sensing,” Opt. Express, vol. 16, no. 26, pp. 21616-21625, 2008.

    [21] Y. Li, L. Chen, Y. Dong, and X. Bao, “A novel distributed Brillouin sensor based on optical differential parametric amplification,” IEEE J. Lightwave Technol., vol. 28, no. 18, pp. 2621-2626, 2010.

    [22] R. W. Boyd, Nonlinear Optics, Second Edition. USA: Academic Press, 2007.

    [23] V. Chandrasekharan, “The exact equation for Brillouin shifts,” J. Physique, vol. 26, no. 11, pp. 655-658, 1965.

    [24] H. I. Mandelberg and L. Witten, “Experimental verification of the relativistic Doppler effect,” J. Opt. Soc. Am., vol. 52, no. 5, pp. 529-536, 1962.

    [25] A. Minardo, R. Bernini, and L. Zeni, “A Simple distributed Brillouin fiber sensors,” IEEE Sensor Journal, vol. 9, no. 6, pp. 633-634, 2009.

    [26] T. R. Parker, M. Farhadiroushan, R. Feced, and V. A. Habderek, “Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers,” IEEE J. Quantum Electronics, vol. 34, no. 4 pp. 645-659, 1998.

    [27] H. K. Huai, G. P. Lees, and T. P. Newson, “All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering,” Opt. Lett., vol. 25, no. 10, pp. 695-697, 2000.

    [28] J. Smith, M. DeMerchant, A. Brown, and X. Bao, “Simultaneous distributed strain and temperature measurement,” Appl. Opt., vol. 38, no. 25, pp. 5372-5377, 1999.

    [29] (a) Q. Yu, X. Bao, and L. Chen, “Temperature dependence of Brillouin frequency, power and bandwidth in Panda, Bow tie and Tiger PM fibers,” Opt. Lett., vol. 29, no. 1, pp. 17-19, 2004. (b) Q. Yu, X. Bao, and L. Chen, “The strain dependence of the Brillouin spectrum in polarization maintained fibers at different temperatures,” Opt. Lett., vol. 29, no. 14, pp. 1605-1607, 2004.

    [30] X. Bao, Q. Yu, and L. Chen, “Simultaneous strain and temperature measurements with PM fibers and their error analysis using distributed Brillouin loss system,” Opt Lett., vol. 29, no. 12, pp. 1342-1344, 2004.

    [31] L. Zou, X. Bao, and L. Chen, “Study of the Brillouin scattering spectrum in photonic crystal fiber with Ge-doped core,” Opt. Lett., vol. 28, no. 21, pp. 2022-2024, 2003.

    [32] L. Zou, X. Bao, S. Afshar, and L. Chen, “Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber,” Opt. Lett., vol. 29, no. 13, pp. 1485-1487, 2004.

    [33] Y. Li, X. Bao, F. Ravet, and E. Ponomarev, “Distributed Brillouin sensor system based on offset locking of two DFB lasers,” Appl. Opt., vol. 47, no. 2, pp. 99-102, 2008.

    [34] Y. Doi, S. Fukushima, T. Ohno, and K. Yoshino, “Frequency stabilization of millimeter-wave subcarrier using laser heterodyne source and optical delay line,” IEEE Photon. Technol. Lett., vol. 13, no. 9, pp. 1002-1004, 2001.

    [35] J. Snoddy, Y. Li, F. Ravet, and X. Bao, “Stabilization of EOM bias voltage drift using lock-in amplifier and PID controller in distributed Brillouin sensor system,” App. Opt., vol. 46, no. 9, pp. 1482-1485, 2007.

    [36] Y. Dong, L. Chen, and X. Bao, “A high-performance long-range Brillouin loss-based distributed fiber sensor,” Appl Opt., vol. 49, no. 27, pp. 5020-5025, 2010.

    [37] A. H. Hartog and M. O. Gold, “On the theory of backscattering in single-mode optical fibers,” IEEE J. Lightwave Technol., vol. 2, no. 2, pp. 76-84, 1984.

    [38] M. A. Soto, G. Bolognini, and F. D. Pasquale, “Analysis of optical pulse coding in spontaneous Brillouin-based distributed temperature sensors,” Opt. Express, vol. 16, no. 23, pp. 19097-19111, 2008.

    [39] M. A. Soto, G. Bolognini, and F. D. Pasquale, “Enhanced simultaneous distributed strain and temperature fiber sensor employing spontaneous Brillouin scattering and optical pulse coding,” IEEE Photon. Technol. Lett., vol. 21, no. 7, pp. 450-452, 2009.

    [40] M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett., vol. 35, no. 2, pp. 259-261, 2010.

    [41] N. Linze, W. Li, and X. Bao, “Signal-to-noise ratio improvement in Brillouin sensing,” OFS20, Proc. SPIE, vol. 7503, pp. 75036F-1-75036F-4, 2009.

    [42] H. Liang, W. Li, N. Linze, L. Chen, and X. Bao, “High resolution DPP-BOTDA over 50 km fiber using return to zero coded pulses,” Opt Lett., vol. 35, no. 10, pp. 1503-1505, 2010.

    [43] X. Bao, H. Liang, Y. Dong, W. Li, Y. Li, and L. Chen, “Pushing the limit of the distributed Brillouin sensors for the sensing length and the spatial resolution(Invited Paper),” Proc. SPIE, vol. 7677, pp. 767702, 2010.

    [44] V. P. Kalosha, L. Chen, and X. Bao, “Slow light of sub-nanosecond pulses via stimulated Brillouin scattering in non-uniform fibers,” Phys. Rev. A: Rapid Communications, vol. 75, no. 2, pp. 21802-21805, 2007.

    [45] W. Li, X. Bao, V. P. Kalosha, L. Chen, and M. J. Li, “Using nonuniform fiber to generate slow light via SBS,” Research Letters in Optics, vol. 1, Article ID 253634, 4 pages, 2008.

    [46] X. Bao, Y. Dong, and L. Chen, “Development and application of the long-range distributed sensors based on Brillouin scattering” in Smart Sensors and Sensing Technology, Ed. Daniel E. Suarez, Nova Scientific Publishers, 2011.

    [47] Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing based BOTDA over 100 km sensing length,” Opt Lett., vol. 36, no. 2, pp. 277-279, 2011.

    [48] Y. Dong, L. Chen, and X. Bao, “Truly distributed birefringence measurement of polarizationmaintaining fibers based on transient Brillouin grating,” Opt. Lett., vol. 35, no. 2, pp. 193-195, 2010.

    [49] Y. Dong, X. Bao, and L. Chen, “Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarizationmaintaining photonic crystal fiber,” Opt. Lett., vol. 34, no. 17, pp. 2590-2592, 2009.

    [in Chinese], [in Chinese]. Recent Progress in Optical Fiber Sensors Based on Brillouin Scattering at University of Ottawa[J]. Photonic Sensors, 2011, 1(2): 102
    Download Citation