• Infrared and Laser Engineering
  • Vol. 47, Issue 1, 121002 (2018)
Yuan Yuyang1、2、*, Zhang Huifang2, Zhang Xueqian2, Gu Jianqiang2, Hu Fangrong1、3, Xiong Xianming1、3, Zhang Wentao1、3, and Han Jiaguang1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/irla201847.0121002 Cite this Article
    Yuan Yuyang, Zhang Huifang, Zhang Xueqian, Gu Jianqiang, Hu Fangrong, Xiong Xianming, Zhang Wentao, Han Jiaguang. Coupling effect of bright and dark modes in THz metamaterials[J]. Infrared and Laser Engineering, 2018, 47(1): 121002 Copy Citation Text show less
    References

    [1] Pendry J B. Negative refraction makes a perfect lens [J]. Phys Rev Lett, 2000, 85(18): 3966-3969.

    [2] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79.

    [3] Zhang S, Fan W, Panoiu N C, et al. Experimental demonstration of near-infrared negative-index metamaterials [J]. Phys Rev Lett, 2005, 95(13): 137404.

    [4] Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537.

    [5] Zhang S, Xiong Y, Bartal G, et al. Magnetized plasma for reconfigurable subdiffraction imaging [J]. Phys Rev Lett, 2011, 106(24): 243901.

    [6] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields [J]. Science, 2006, 312(5781): 1780-1782.

    [7] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(5801): 977-980.

    [8] Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking [J]. Phys Rev Lett, 2008, 101(20): 203901.

    [9] Ergin T, Stenger N, Brenner P, et al. Three-dimensional invisibility cloak at optical wavelengths [J]. Science, 2010, 328(5976): 337-339.

    [10] Tao H, Landy N I, Bingham C M, et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization [J]. Opt Express, 2008, 16(10): 7181-7188.

    [11] Liu N, Mesch M, Weiss T, et al. Infrared perfect absorber and its application as plasmonic sensor [J]. Nano Lett, 2010, 10(7): 2342-2348.

    [12] Aydin K, Ferry V E, Briggs R M, et al. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers[J]. Nat Commun, 2011, 2: 517.

    [13] Feng Q, Pu M, Hu C, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption[J]. Opt Lett, 2012, 37(11): 2133-2135.

    [14] Argyropoulos C, Le K Q, Mattiucci N, et al. Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces [J]. Phys Rev B, 2013, 87(20): 205112.

    [15] Kang M, Liu F, Li T F, et al. Polarization-independent coherent perfect absorption by a dipole-like metasurface [J]. Opt Lett, 2013, 38(16): 3086-3088.

    [16] Yue W, Wang Z, Yang Y, et al. High performance infrared plasmonic metamaterial absorbers and their applications to thin-film sensing[J]. Plasmonics, 2016, 11(6): 1557-1563.

    [17] Hu F, Xu N, Wang W, et al. A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array[J]. J Micromech Microeng, 2016, 26(2): 025006.

    [18] Zhang S, Genov D A, Wang Y, et al. Plasmon-induced transparency in metamaterials [J]. Phys Rev Lett, 2008, 101(4): 047401.

    [19] Papasimakis N, Fedotov V A, Zheludev N I, et al. Metamaterial analog of electromagnetically induced transparency [J]. Phys Rev Lett, 2008, 101(25): 253903.

    [20] Tassin P, Zhang L, Koschny T, et al. Low-loss metamaterials based on classical electromagnetically induced transparency [J]. Phys Rev Lett, 2009, 102(5): 053901.

    [21] Liu N, Langguth L, Weiss T, et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit [J]. Nat Mater, 2009, 8(9): 758-762.

    [22] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction [J]. Science, 2011, 334(6054): 333-337.

    [23] Aieta F, Genevet P, Yu N, et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities [J]. Nano Lett, 2012, 12(3): 1702-1706.

    [24] Zhang X, Tian Z, Yue W, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities [J]. Adv Mater, 2013, 25(33): 4567-4572.

    [25] Liu L, Zhang X, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude [J]. Adv Mater, 2014, 26(29): 5031-5036.

    [26] Radko I P, Volkov V S, Beermann J. et al. Plasmonic metasurfaces for waveguiding and field enhancement [J]. Laser & Photon Rev, 2009, 3(6): 575-590.

    [27] Zhao C, Zhang J. Plasmonic demultiplexer and guiding [J]. ACS Nano, 2010, 4(11): 6433-6438.

    [28] Tanemura T, Balram K C, Ly-Gagnon D S, et al. Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler [J]. Nano Lett, 2011, 11(7): 2693-2698.

    [29] Huang L, Chen X, Bai B, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity [J]. Light: Science & Application, 2013, 2(3): e70.

    [30] Zhao C, Zhang J, Liu Y. Light manipulation with encoded plasmonic nanostructures [J]. EPJ Appl Metamat, 2014, 1: 6-12.

    [31] Wintz D, Genevet P, Ambrosio A, et al. Holographic metalens for switchable focusing of surface plasmons [J]. Nano Lett, 2015, 15(5): 3585-3589.

    [32] Liu J, Gao Y, Ran L, et al. Focusing surface plasmon and constructing central symmetry of focal field with linearly polarized light[J]. Appl Phys Lett, 2015, 106(1): 013116.

    [33] Zou C, Withayachumnankul W, Shadrivov I V, et al. Directional excitation of surface plasmons by dielectric resonators [J]. Phys Rev B, 2015, 91(8): 085433.

    [34] Zhang X, Xu Y, Yue W, et al. Anomalous surface wave launching by handedness phase control[J]. Adv Mater, 2015, 27(44): 7123-7129.

    [35] Xu Q, Zhang X, Xu Y, et al. Plasmonic metalens based on coupled resonators for focusing of surface plasmons[J]. Sci Rep, 2016, 6: 37861.

    [36] Zhou J, Koschny T, Soukoulis C M. Magnetic and electric excitations in split ring resonators [J]. Opt Express, 2007, 15(26): 17881-17890.

    [37] Singh R, Rockstuhl C, Lederer F, et al. The impact of nearest neighbor interaction on the resonances in terahertz metamaterials [J]. Appl Phys Lett, 2009, 94(2): 021116.

    [38] Chiam S Y, Singh R, Zhang W, et al. Controlling metamaterial resonances via dielectric and aspect ratio effects [J]. Appl Phys Lett, 2010, 97(19): 191906.

    [39] Wu P C, Hsu W L, Chen W T, et al. Plasmon coupling in vertical split-ring resonator metamolecules [J]. Sci Rep, 2015, 5: 9726.

    [40] Manjappa M, Srivastava Y K, Singh R. Lattice-induced transparency in planar metamaterials [J]. Phys Rev B, 2016, 94(16): 161103.

    [41] Chen C Y, Un I W, Tai N H, et al. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance [J]. Opt Express, 2009, 17(17): 15372-15380.

    [42] Ma Y, Li Z, Yang Y, et al. Plasmon-induced transparency in twisted Fano terahertz metamaterials [J]. Opt Mater Express, 2011, 1(3): 391-399.

    [43] Taubert R, Hentschel M, Kastel J, et al. Classical analog of electromagnetically induced absorption in plasmonics[J]. Nano Lett, 2012, 12(3): 1367-1371.

    [44] Verslegers L, Yu Z, Ruan Z, et al. From electromagnetically induced transparency to superscattering with a single structure: a coupled-mode theory for doubly resonant structures [J]. Phys Rev Lett, 2012, 108(8): 083902.

    [45] Tassin P, Zhang L, Zhao R, et al. Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation [J]. Phys Rev Lett, 2012, 109(18): 187401.

    [46] Qu K, Agarwal G S. Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems [J]. Phys Rev A, 2013, 87(3): 031802.

    [47] Liao Z, Pan B C, Shen X, et al. Multiple Fano resonances in spoof localezed surface plasmons [J]. Opt Express, 2014, 22(13): 15710-15717.

    [48] Chen L, Wei Y M, Zang X F, et al. Excitation of dark multipolar plasmonic resonances at terahertz frequencies [J]. Sci Rep, 2016, 6: 22027.

    [49] Zhang X, Xu Q, Li Q, et al. Asymmetric excitation of surface plasmons by dark mode coupling[J]. Sci Adv, 2016, 2(2): e1501142.

    [50] Liu X, Gu J, Singh R, et al. Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode [J]. Appl Phys Lett, 2012, 100(13): 131101.

    [51] Liang D, Zhang H, Gu J, et al. Plasmonic analogue of electromagneticlly induced transparency in stereo metamaterials [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 1-7.

    [52] Zhang X, Xu N, Qu K, et al. Electromagnetically induced absorption in a three-resonator metasurface system [J]. Sci Rep, 2015, 5: 10737.

    [53] Boiler K J, Imamolu A, Harris S E. Observation of electromagnetically induced transparency [J]. Phys Rev Lett, 1991, 66(20): 2593-2596.

    [54] Gu J, Singh R, Liu X, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials [J]. Nat Commun, 2012, 3: 1151.

    [55] Wu P C, Chen W T, Yang K Y, et al. Magnetic plasmon induced transparency in three-dimensional metamolecules [J]. Nanophotonics, 2012, 1(2): 131-138.

    [56] Yang Y M, Kravchenko I I, Briggs D, et al. All dielectric metasurface analogue of electromagnetically induced transparency [J]. Nat Commun, 2014, 5: 5753.

    [57] Kaelberer T, Fedotov V A, Papasimakis N, et al. Toroidal dipolar response in a metamaterial [J]. Science, 2010, 330(6010): 1510-1512.

    [58] Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer [J]. Science, 2009, 325(5947): 1513-1515.

    [59] Zhang S, Park Y S, Li J, et al. Negative refractive index in chiral metamaterials[J]. Phys Rev Lett, 2009, 102(2): 023901.

    [60] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics [J]. Nature, 2003, 424(6950): 824-830.

    [61] Ebbesen T W, Genet C, Bozhevolnyi S I. Surface-plasmon circuitry [J]. Phys Today, 2008, 61(5): 44-50.

    [62] Sorger V J, Oulton R F, Ma R M, et al. Toward integrated plasmonic circuits [J]. MRS Bulletin, 2012, 37(8): 728-738.

    [63] Fang Y, Sun M. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits [J]. Light: Science & Application, 2015, 4(6): e294.

    [64] Xu Y, Zhang X, Tian Z, et al. Mapping the near-field propagation of surface plasmons on terahertz metasurfaces [J]. Appl Phys Lett, 2015, 107(2): 021105.

    CLP Journals

    [1] HU Sen, LIU Dan1, YANG He-lin. Electromagnetic Induced Transparency Based on All-dielectric Metasurface[J]. Acta Photonica Sinica, 2018, 47(11): 1116001

    Yuan Yuyang, Zhang Huifang, Zhang Xueqian, Gu Jianqiang, Hu Fangrong, Xiong Xianming, Zhang Wentao, Han Jiaguang. Coupling effect of bright and dark modes in THz metamaterials[J]. Infrared and Laser Engineering, 2018, 47(1): 121002
    Download Citation