• Laser & Optoelectronics Progress
  • Vol. 58, Issue 10, 1011008 (2021)
Zhijie Tan1, Qingyu Li1、2, Hong Yu1、3、*, and Shensheng Han1、3
Author Affiliations
  • 1Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
  • show less
    DOI: 10.3788/LOP202158.1011008 Cite this Article Set citation alerts
    Zhijie Tan, Qingyu Li, Hong Yu, Shensheng Han. Progress on Ghost Imaging with X-Ray and Particles[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011008 Copy Citation Text show less
    References

    [1] Yuan Q X, Deng B, Guan Y et al. Novel developments and applications of nanoscale synchrotron radiation microscopy[J]. Physics, 48, 205-218(2019).

    [2] Röntgen W C. On a new kind of rays[J]. Science, 3, 227-231(1896).

    [3] Davis T J, Gao D, Gureyev T E et al. Phase-contrast imaging of weakly absorbing materials using hard X-rays[J]. Nature, 373, 595-598(1995). http://link.springer.com/article/10.1038/373595a0

    [4] Endrizzi M. X-ray phase-contrast imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 878, 88-98(2018). http://www.researchgate.net/profile/Omar_Atef_Radwan/post/Grain_size_analysis_for_homogeneous_consolidated_materials/attachment/5a929f26b53d2f0bba542d23/AS%3A597885573951495%401519558437924/download/X-ray+phase-contrast+imaging.pdf

    [5] Takeda T. Phase-contrast and fluorescent X-ray imaging for biomedical researches[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 548, 38-46(2005). http://www.sciencedirect.com/science/article/pii/S0168900205006510

    [6] Mancuso A P, Yefanov O M, Vartanyants I A. Coherent diffractive imaging of biological samples at synchrotron and free electron laser facilities[J]. Journal of Biotechnology, 149, 229-237(2010). http://www.sciencedirect.com/science/article/pii/S0168165610000702

    [7] Jiang H D. Cryo-coherent diffractive imaging of biological samples with X-ray free-electron lasers[J]. Acta Crystallographica. Section A, Foundations and Advances, 72, 177-178(2016).

    [8] Nishino Y, Takahashi Y, Imamoto N et al. Three-dimensional visualization of a human chromosome using coherent X-ray diffraction[J]. Physical Review Letters, 102, 018101(2009).

    [9] Fan J D, Jiang H D. Coherent X-ray diffraction imaging and its applications in materials science and biology[J]. Acta Physica Sinica, 61, 218702(2012).

    [10] Bilheux H Z, McGreevy R, Anderson I S. Neutron imaging and applications[M]. Boston: Springer(2009).

    [11] Siegel J B, Lin X F, Stefanopoulou A G et al. Neutron imaging of lithium concentration in LFP pouch cell battery[J]. Journal of the Electrochemical Society, 158, A523(2011). http://www.researchgate.net/publication/234912288_Neutron_Imaging_of_Lithium_Concentration_in_LFP_Pouch_Cell_Battery

    [12] Grünzweig C, David C, Bunk O et al. Neutron decoherence imaging for visualizing bulk magnetic domain structures[J]. Physical Review Letters, 101, 025504(2008). http://www.ncbi.nlm.nih.gov/pubmed/18764196

    [13] Kardjilov N, Manke I, Woracek R et al. Advances in neutron imaging[J]. Materials Today, 21, 652-672(2018).

    [14] Woracek R, Santisteban J, Fedrigo A et al. Diffraction in neutron imaging: a review[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 878, 141-158(2018). http://adsabs.harvard.edu/abs/2018NIMPA.878..141W

    [15] Haguenau F, Hawkes P W, Hutchison J L et al. Key events in the history of electron microscopy[J]. Microscopy and Microanalysis, 9, 96-138(2003). http://europepmc.org/abstract/MED/12639238

    [16] Twiss R Q, Brown R H. The question of correlation between photons in coherent beams of light[J]. Nature, 179, 1128-1129(1957). http://www.nature.com/articles/1791128a0

    [17] Brown R H, Twiss R Q. A test of a new type of stellar interferometer on Sirius[J]. Nature, 178, 1046-1048(1956). http://www.nature.com/articles/1781046a0/

    [18] Glauber R J. The quantum theory of optical coherence[J]. Physical Review, 130, 2529-2539(1963).

    [19] Glauber R J. Coherent and incoherent states of the radiation field[J]. Physical Review, 131, 2766-2788(1963).

    [20] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429-R3432(1995). http://europepmc.org/abstract/med/9912767

    [21] Shih Y. The physics of ghost imaging:nonlocal interference or local intensity fluctuation correlation?[J]. Quantum Information Processing, 11, 995-1001(2012). http://dl.acm.org/doi/abs/10.1007/s11128-012-0396-5

    [22] Strekalov D V, Sergienko A V, Klyshko D N et al. Observation of two-photon “ghost” interference and diffraction[J]. Physical Review Letters, 74, 3600-3603(1995). http://europepmc.org/abstract/MED/10058246

    [23] Gatti A, Brambilla E, Bache M et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Physical Review Letters, 93, 093602(2004).

    [24] Gong W L, Han S S. Phase-retrieval ghost imaging of complex-valued objects[J]. Physical Review A, 82, 023828(2010).

    [25] Cheng J, Han S S. Incoherent coincidence imaging and its applicability in X-ray diffraction[J]. Physical Review Letters, 92, 093903(2004). http://europepmc.org/abstract/MED/15089466

    [26] Pelliccia D, Rack A, Scheel M et al. Experimental X-ray ghost imaging[J]. Physical Review Letters, 117, 113902(2016).

    [27] Yu H, Lu R H, Han S S et al. Fourier-transform ghost imaging with hard X-rays[J]. Physical Review Letters, 117, 113901(2016).

    [28] Kingston A M, Myers G R, Pelliccia D et al. Neutron ghost imaging[J]. Physical Review A, 101, 053844(2020).

    [29] Khakimov R I, Henson B M, Shin D K et al. Ghost imaging with atoms[J]. Nature, 540, 100-103(2016).

    [30] Li S, Cropp F, Kabra K et al. Electron ghost imaging[J]. Physical Review Letters, 121, 114801(2018).

    [31] Bonse U, Hart M. An X-ray interferometer[J]. Applied Physics Letters, 6, 155-156(1965).

    [32] Liu H L, Shen X, Zhu D M et al. Fourier-transform ghost imaging with pure far-field correlated thermal light[J]. Physical Review A, 76, 053808(2007).

    [33] Wang H, Han S S. Coherent ghost imaging based on sparsity constraint without phase-sensitive detection[J]. Europhysics Letters, 98, 24003(2012). http://adsabs.harvard.edu/abs/2012EL.....9824003W

    [34] Schneider R, Mehringer T, Mercurio G et al. Quantum imaging with incoherently scattered light from a free-electron laser[J]. Nature Physics, 14, 126-129(2018).

    [35] Oppel S, Büttner T, Kok P et al. Superresolving multiphoton interferences with independent light sources[J]. Physical Review Letters, 109, 233603(2012). http://smartsearch.nstl.gov.cn/paper_detail.html?id=d837ec4bbf9e7fba24f7863a75aa955c

    [36] Classen A, Waldmann F, Giebel S et al. Superresolving imaging of arbitrary one-dimensional arrays of thermal light sources using multiphoton interference[J]. Physical Review Letters, 117, 253601(2016).

    [37] Thiel C, Bastin T, Martin J et al. Quantum imaging with incoherent photons[J]. Physical Review Letters, 99, 133603(2007).

    [38] Zhang A X, He Y H, Wu L G et al. Tabletop X-ray ghost imaging with ultra-low radiation[J]. Optica, 5, 374-377(2018). http://arxiv.org/abs/1709.01016

    [39] Maddox B R, Park H S, Remington B A et al. High-energy X-ray backlighter spectrum measurements using calibrated image plates[J]. Review of Scientific Instruments, 82, 023111(2011). http://europepmc.org/abstract/MED/21361577

    [40] He Y H, Zhang A X, Li M F et al. High-resolution sub-sampling incoherent X-ray imaging with a single-pixel detector[J]. APL Photonics, 5, 056102(2020). http://www.researchgate.net/publication/341146598_High-resolution_sub-sampling_incoherent_x-ray_imaging_with_a_single-pixel_detector

    [41] Kingston A M, Pelliccia D, Rack A et al. Ghost tomography[J]. Optica, 5, 1516-1520(2018).

    [42] Kingston A M, Myers G R, Pelliccia D et al. X-ray ghost-tomography: artefacts, dose distribution, and mask considerations[J]. IEEE Transactions on Computational Imaging, 5, 136-149(2019). http://ieeexplore.ieee.org/document/8528558/references

    [43] Kim Y Y, Gelisio L, Mercurio G et al. Ghost imaging at an XUV free-electron laser[J]. Physical Review A, 101, 013820(2020). http://www.researchgate.net/publication/338665620_Ghost_imaging_at_an_XUV_free-electron_laser

    [44] Pfeifer T, Jiang Y H, Düsterer S et al. Partial-coherence method to model experimental free-electron laser pulse statistics[J]. Optics Letters, 35, 3441-3443(2010). http://europepmc.org/abstract/MED/20967093

    [45] Lemos G B, Borish V, Cole G D et al. Quantum imaging with undetected photons[J]. Nature, 512, 409-412(2014).

    [46] Brida G, Genovese M, Berchera I R. Experimental realization of sub-shot-noise quantum imaging[J]. Nature Photonics, 4, 227-230(2010). http://www.nature.com/articles/nphoton.2010.29

    [47] Schori A, Borodin D, Tamasaku K et al. Ghost imaging with paired X-ray photons[C]. //Conference on Lasers and Electro-Optics, May 13-18, 2018, San Jose, California. Washington, D.C.: OSA, JTh2A.7(2018).

    [48] Jaskula J C, Bonneau M, Partridge G B et al. Sub-Poissonian number differences in four-wave mixing of matter waves[J]. Physical Review Letters, 105, 190402(2010). http://www.ncbi.nlm.nih.gov/pubmed/21231151

    [49] Perrin A, Chang H, Krachmalnicoff V et al. Observation of atom pairs in spontaneous four-wave mixing of two colliding Bose--Einstein condensates[J]. Physical Review Letters, 99, 150405(2007).

    [50] Lewis-Swan R J. Proposal for demonstrating the Hong-Ou-Mandel effect with matter waves[M]. //Lewis-Swan R J. Ultracold atoms for foundational tests of quantum mechanics, 45-55(2016).

    [51] Lewis-Swan R J, Kheruntsyan K V. Proposal for a motional-state Bell inequality test with ultracold atoms[J]. Physical Review A, 91, 052114(2015).

    [52] Kapitza P L. Dirac P A M. The reflection of electrons from standing light waves[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 29, 297-300(1933). http://journals.cambridge.org/abstract_S0305004100011105

    [53] Ovchinnikov Y B, Müller J H, Doery M R et al. Diffraction of a released Bose--Einstein condensate by a pulsed standing light wave[J]. Physical Review Letters, 83, 284-287(1999). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000083000002000284000001&idtype=cvips&gifs=Yes

    [54] Gould P L, Ruff G A, Pritchard D E. Diffraction of atoms by light: the near-resonant Kapitza--Dirac effect[J]. Physical Review Letters, 56, 827-830(1986). http://www.ncbi.nlm.nih.gov/pubmed/10033296

    [55] Vassen W, Cohen-Tannoudji C, Leduc M et al. Cold and trapped metastable noble gases[J]. Reviews of Modern Physics, 84, 175-210(2012).

    [56] Hodgman S S, Bu W, Mann S B et al. Higher-order quantum ghost imaging with ultracold atoms[J]. Physical Review Letters, 122, 233601(2019). http://arxiv.org/abs/1901.06810

    [57] Trtik P, Hovind J, Grünzweig C et al. Improving the spatial resolution of neutron imaging at Paul Scherrer Institut: the neutron microscope project[J]. Physics Procedia, 69, 169-176(2015). http://www.sciencedirect.com/science/article/pii/S1875389215006343

    [58] Chen K, Han S S. Microscopy for atomic and magnetic structures based on thermal neutron Fourier-transform ghost imaging[EB/OL]. (2018-01-29)[2021-03-01]. https://arxiv.org/abs/1801.10046v1

    [59] Garbe U, Ahuja Y, Ibrahim R et al. Industrial application experiments on the neutron imaging instrument DINGO[J]. Physics Procedia, 88, 13-18(2017). http://www.sciencedirect.com/science/article/pii/S1875389217300512

    [60] Song G, Lin J, Bilheux J C et al. Characterization of crystallographic structures using Bragg-edge neutron imaging at the spallation neutron source[J]. Journal of Imaging, 3, 65(2017). http://www.researchgate.net/publication/321956300_Characterization_of_Crystallographic_Structures_Using_Bragg-Edge_Neutron_Imaging_at_the_Spallation_Neutron_Source

    [61] Kim F H, Penumadu D, Gregor J et al. High-resolution neutron and X-ray imaging of granular materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 139, 715-723(2013). http://www.researchgate.net/publication/259148562_High-Resolution_Neutron_and_X-Ray_Imaging_of_Granular_Materials

    [62] Landweber L. An iteration formula for fredholm integral equations of the first kind[J]. American Journal of Mathematics, 73, 615-624(1951). http://www.ams.org/mathscinet-getitem?mr=43348

    [63] He Y H, Huang Y Y, Zeng Z R et al. Single-pixel imaging with neutrons[J]. Science Bulletin, 66, 133-138(2021). http://www.sciencedirect.com/science/article/pii/S2095927320306265

    [64] Santoro F, Zhao W T, Joubert L M et al. Revealing the cell-material interface with nanometer resolution by focused ion beam/scanning electron microscopy[J]. ACS Nano, 11, 8320-8328(2017). http://smartsearch.nstl.gov.cn/paper_detail.html?id=48368e1ebad480fea1df3520891e4b3d

    [65] Li S, Alverson S, Bohler D et al. Ultraviolet laser transverse profile shaping for improving X-ray free electron laser performance[J]. Physical Review Accelerators and Beams, 20, 080704(2017). http://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.20.080704

    [66] Alesini D, Battisti A, Ferrario M et al. New technology based on clamping for high gradient radio frequency photogun[J]. Physical Review Special Topics-Accelerators and Beams, 18, 092001(2015). http://adsabs.harvard.edu/abs/2015PhRvS..18i2001A

    [67] Boyd S, Parikh N, Chu E et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends ® in Machine Learning, 3, 1-122(2011).

    [68] Faure J, Rechatin C, Norlin A et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses[J]. Nature, 444, 737-739(2006). http://www.nature.com/nature/journal/v444/n7120/abs/nature05393.html

    [69] McCulloch A J, Sheludko D V, Saliba S D et al. Arbitrarily shaped high-coherence electron bunches from cold atoms[J]. Nature Physics, 7, 785-788(2011).

    [70] Reijnders M P, van Kruisbergen P A, Taban G et al. Low-energy-spread ion bunches from a trapped atomic gas[J]. Physical Review Letters, 102, 034802(2009).

    [71] Goodman J W. Statistical optics[M](2015).

    [72] Tian N, Guo Q, Wang A et al. Fluorescence ghost imaging with pseudothermal light[J]. Optics Letters, 36, 3302-3304(2011). http://www.opticsinfobase.org/abstract.cfm?uri=ol-36-16-3302

    [73] Martienssen W, Spiller E. Coherence and fluctuations in light beams[J]. American Journal of Physics, 32, 919-926(1964). http://scitation.aip.org/content/aapt/journal/ajp/32/12/10.1119/1.1970023

    [74] Zhang M H, Wei Q, Shen X et al. Lensless Fourier-transform ghost imaging with classical incoherent light[J]. Physical Review A, 75, 021803(2007). http://www.oalib.com/paper/3703935

    [75] Zhao X, Yu H, Lu R H et al. Research on pseudo-thermal source of X-ray Fourier-transform ghost imaging[J]. Acta Optica Sinica, 37, 0511001(2017).

    [76] Candes E J, Wakin M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 25, 21-30(2008). http://ieeexplore.ieee.org/document/4472240/

    [77] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [78] Zhang Z, Ma X, Zhong J. Single-pixel imaging by means of Fourier spectrum acquisition[J]. Nature Communications, 6, 6225(2015).

    [79] Khamoushi S M, Nosrati Y, Tavassoli S H. Sinusoidal ghost imaging[J]. Optics Letters, 40, 3452-3455(2015).

    [80] Lane T J, Ratner D. What are the advantages of ghost imaging? Multiplexing for X-ray and electron imaging[J]. Optics Express, 28, 5898-5918(2020). http://www.researchgate.net/publication/338988520_What_are_the_advantages_of_ghost_imaging_Multiplexing_for_x-ray_and_electron_imaging

    [81] Tan Z, Yu H, Lu R et al. Non-locally coded Fourier-transform ghost imaging[J]. Optics Express, 27, 2937-2948(2019). http://www.researchgate.net/publication/330747656_Non-locally_coded_Fourier-transform_ghost_imaging

    [82] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 95, 131110(2009).

    [83] Zhu R G, Yu H, Lu R H et al. Spatial multiplexing reconstruction for Fourier-transform ghost imaging via sparsity constraints[J]. Optics Express, 26, 2181-2190(2018).

    [84] Liu P J, Zhang H Z, Zhang K et al. Multi-level wavelet-CNN for image restoration[C]. //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), June 18-22, 2018, Salt Lake City, UT, USA., 886(2018).

    [85] Lyu M, Wang W, Wang H et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 7, 17865(2017). http://www.ncbi.nlm.nih.gov/pubmed/29259269

    [86] Sinha A, Lee J, Li S et al. Lensless computational imaging through deep learning[J]. Optica, 4, 1117-1125(2017). http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-4-9-1117

    [87] Shimobaba T, Endo Y, Nishitsuji T et al. Computational ghost imaging using deep learning[J]. Optics Communications, 413, 147-151(2018).

    [88] Wang F, Wang H, Wang H C et al. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging[J]. Optics Express, 27, 25560-25572(2019). http://www.ncbi.nlm.nih.gov/pubmed/31510427

    [89] Zhu R G, Yu H, Tan Z J et al. Ghost imaging based on Y-Net: a dynamic coding and decoding approach[J]. Optics Express, 28, 17556-17569(2020). http://arxiv.org/abs/2002.03824v2

    Zhijie Tan, Qingyu Li, Hong Yu, Shensheng Han. Progress on Ghost Imaging with X-Ray and Particles[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011008
    Download Citation