• Journal of Semiconductors
  • Vol. 44, Issue 1, 010301 (2023)
Moyu Chen1, Fanqiang Chen1, Bin Cheng2、*, Shi Jun Liang1、**, and Feng Miao1、***
Author Affiliations
  • 1Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210008, China
  • 2Institute of Interdisciplinary Physical Sciences, School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
  • show less
    DOI: 10.1088/1674-4926/44/1/010301 Cite this Article
    Moyu Chen, Fanqiang Chen, Bin Cheng, Shi Jun Liang, Feng Miao. Moiré heterostructures: highly tunable platforms for quantum simulation and future computing[J]. Journal of Semiconductors, 2023, 44(1): 010301 Copy Citation Text show less
    References

    [1] Y Cao, V Fatemi, A Demir et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 556, 80(2018).

    [2] X Lu, P Stepanov, W Yang et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature, 574, 653(2019).

    [3] Y Cao, V Fatemi, S Fang et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556, 43(2018).

    [4] M Oh, K P Nuckolls, D Wong et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature, 600, 240(2021).

    [5] Y Cao, D Rodan-Legrain, O Rubies-Bigorda et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature, 583, 215(2020).

    [6] G Chen, A L Sharpe, E J Fox et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature, 579, 56(2020).

    [7] X Liu, Z Hao, E Khalaf et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature, 583, 221(2020).

    [8] H Polshyn, J Zhu, M A Kumar et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature, 588, 66(2020).

    [9] G Chen, L Jiang, S Wu et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nature Phys, 15, 237(2019).

    [10] S Chen, M He, Y H Zhang et al. Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene. Nature Phys, 17, 374(2021).

    [11] C Shen, Y Chu, Q Wu et al. Correlated states in twisted double bilayer graphene. Nature Phys, 16, 520(2020).

    [12] S Xu, M M Al Ezzi, N Balakrishnan et al. Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene. Nature Phys, 17, 619(2021).

    [13] E C Regan, D Wang, C Jin et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature, 579, 359(2020).

    [14] Y Shimazaki, I Schwartz, K Watanabe et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature, 580, 472(2020).

    [15] Y Tang, L Li, T Li et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature, 579, 353(2020).

    [16] L Wang, E M Shih, A Ghiotto et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nature Mater, 19, 861(2020).

    [17] Y Xu, S Liu, D A Rhodes et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature, 587, 214(2020).

    [18] A Ghiotto, E M Shih, G S S G Pereira et al. Quantum criticality in twisted transition metal dichalcogenides. Nature, 597, 345(2021).

    [19] H Li, S Li, E C Regan et al. Imaging two-dimensional generalized Wigner crystals. Nature, 597, 650(2021).

    [20] T Li, S Jiang, L Li et al. Continuous Mott transition in semiconductor moiré superlattices. Nature, 597, 350(2021).

    [21] T Li, S Jiang, B Shen et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature, 600, 641(2021).

    [22] J Gu, L Ma, S Liu et al. Dipolar excitonic insulator in a moiré lattice. Nature Phys, 18, 395(2022).

    [23] Z Zhang, E C Regan, D Wang et al. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nature Phys, 18, 1214(2022).

    [24] Q Li, B Cheng, M Chen et al. Tunable quantum criticalities in an isospin extended Hubbard model simulator. Nature, 609, 479(2022).

    [25] S Wu, Z Zhang, K Watanabe et al. Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene. Nature Mater, 20, 488(2021).

    [26] Y Saito, J Ge, L Rademaker et al. Hofstadter subband ferromagnetism and symmetry-broken Chern insulators in twisted bilayer graphene. Nature Phys, 17, 478(2021).

    [27] M Serlin, CL Tschirhart, H Polshyn et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science, 367, 900(2020).

    [28] A L Sharpe, E J Fox, AW Barnard et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science, 365, 605(2019).

    [29] M Vizner Stern, Y Waschitz, W Cao et al. Interfacial ferroelectricity by van der Waals sliding. Science, 372, 1462(2021).

    [30] K Yasuda, X Wang, K Watanabe et al. Stacking-engineered ferroelectricity in bilayer boron nitride. Science, 372, 1458(2021).

    [31] X Wang, K Yasuda, Y Zhang et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nature Nanotechnol, 17, 367(2022).

    [32] A Weston, E G Castanon, V Enaldiev et al. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nature Nanotechnol, 17, 390(2022).

    [33] D R Klein, L Q Xia, D MacNeill et al. Electrical switching of a moiré ferroelectric superconductor. arXiv: 2205.04458(2022).

    [34] R Niu, Z Li, X Han et al. Giant ferroelectric polarization in a bilayer graphene heterostructure. Nature Commun, 13, 6241(2022).

    [35] Z Zheng, Q Ma, Z Bi et al. Unconventional ferroelectricity in moiré heterostructures. Nature, 588, 71(2020).

    [36] J M Park, Y Cao, K Watanabe et al. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature, 590, 249(2021).

    [37] Z Hao, A M Zimmerman, P Ledwith et al. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science, 371, 1133(2021).

    [38] A I Berdyugin, N Xin, H Gao et al. Out-of-equilibrium criticalities in graphene superlattices. Science, 375, 430(2022).

    [39] H Tian, S Che, T Xu et al. Evidence for flat band dirac superconductor originating from quantum geometry. arXiv: 2112.13401(2021).

    [40] Y Cao, D Rodan-Legrain, J M Park et al. Nematicity and competing orders in superconducting magic-angle graphene. Science, 372, 264(2021).

    [41] D M Kennes, M Claassen, L Xian et al. Moiré heterostructures as a condensed-matter quantum simulator. Nature Phys, 17, 155(2021).

    [42] Y Xu, K Kang, K Watanabe et al. A tunable bilayer Hubbard model in twisted WSe2. Nature Nanotechnol, 17, 934(2022).

    [43] W Zhao, B Shen, Z Tao et al. Gate-tunable heavy fermions in a moiré Kondo lattice. arXiv: 2211.00263(2022).

    [44] C Wang, Y Gao, H Lv et al. Stacking domain wall magnons in twisted van der Waals magnets. Phys Rev Lett, 125, 247201(2020).

    [45] K Hejazi, Z X Luo, L Balents. Noncollinear phases in moiré magnets. Proceedings of the National Academy of Sciences, 117, 10721(2020).

    [46] Y Li, S Zhang, F Chen et al. Observation of coexisting dirac bands and moiré flat bands in magic‐angle twisted trilayer graphene. Adv Mater, 34, 2205996(2022).

    [47] S B Bravyi, A Y Kitaev. Fermionic quantum computation. Annals of Physics, 298, 210(2002).

    [48] C Ma, S Yuan, P Cheung et al. Intelligent infrared sensing enabled by tunable moiré quantum geometry. Nature, 604, 266(2022).

    [49] K F Mak, D Xiao, J Shan. Light–valley interactions in 2D semiconductors. Nature Photonics, 12, 451(2018).

    Moyu Chen, Fanqiang Chen, Bin Cheng, Shi Jun Liang, Feng Miao. Moiré heterostructures: highly tunable platforms for quantum simulation and future computing[J]. Journal of Semiconductors, 2023, 44(1): 010301
    Download Citation