• Laser & Optoelectronics Progress
  • Vol. 55, Issue 6, 060002 (2018)
Jian Cui, Boyu Ji*; , and Jingquan Lin
Author Affiliations
  • Ultrafast Optics Laboratory, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • show less
    DOI: 10.3788/LOP55.060002 Cite this Article Set citation alerts
    Jian Cui, Boyu Ji, Jingquan Lin. Plasmonic Fano Resonance in Metallic Disk-Like Nanostructure System[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060002 Copy Citation Text show less
    References

    [1] Sarrazin M, Vigneron J P. Bounded modes to the rescue of optical transmission[J]. Europhysics News, 38, 27-31(2007). http://arxiv.org/abs/0710.3291

    [2] Tribelsky M I, Flach S, Miroshnichenko A E et al. Light scattering by a finite obstacle and Fano resonances[J]. Physical Review Letters, 100, 043903(2008). http://europepmc.org/abstract/MED/18352275

    [3] Miroshnichenko A E, Flach S, Gorbach A V et al. Fano resonances: a discovery that was not made 100 years ago[J]. Optics & Photonics News, 19, 48(2008). http://www.opticsinfobase.org/OPN/abstract.cfm?uri=opn-19-12-48

    [4] Li M J, Li X M. Group theory of Fano resonance spectra in system of C3v and C4v metallic multi-nanoparticles-thin film[J]. Acta Optica Sinica, 36, 1024001(2016).

    [5] Feng H. Sonnefraud Y, van Dorpe P, et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance[J]. Nano Letters, 8, 3983-3988(2008).

    [6] Khan A D. Enhanced plasmonic Fano-like resonances in multilayered nanoellipsoid[J]. Applied Physics A, 122, 1-7(2016). http://link.springer.com/article/10.1007/s00339-016-9816-1

    [7] Panaro S, Nazir A, Razzari L et al. Plasmonic moon: a Fano-like approach for squeezing the magnetic field in the infrared[J]. Nano Letters, 15, 6128-6134(2015). http://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5b02407

    [8] Yang Y M, Wang W Y, Boulesbaa A et al. Nonlinear Fano-resonant dielectric metasurfaces[J]. Nano Letters, 15, 7388-7393(2015). http://europepmc.org/abstract/MED/26501777

    [9] Katie E, Hopkins B, Staude I et al. Observation of Fano resonances in all-dielectric nanoparticle oligomers[J]. Small, 10, 1985-1990(2014). http://europepmc.org/abstract/med/24616191

    [10] Yang D J, Yang Z J, Li Y Y et al. Tunable Fano resonance in rod-ring plasmonic nanocavities[J]. Plasmonics, 10, 263-269(2014). http://link.springer.com/article/10.1007/s11468-014-9804-2

    [11] Nordlander P, Oubre C, Prodan E et al. Plasmon hybridization in nanoparticle dimers[J]. Nano Letters, 4, 899-903(2004). http://pubs.acs.org/doi/abs/10.1021/nl049681c

    [12] Chen Y, Luo P, Tian Y N et al. Fano resonance slow light characteristics of metal-dielectric-metal waveguide coupled cavity with metallic double-slit[J]. Acta Optica Sinica, 37, 0924002(2017).

    [13] Alemayehu N K, Ji B Y, Lin J Q et al. Controlling optical field enhancement of a nanoring dimer for plasmon-based application[J]. Journal of Optics, 18, 055007(2016). http://www.ingentaconnect.com/content/iop/jopt2/2016/00000018/00000005/art055007

    [14] Guo Q B, Liu X F, Qiu J R et al. Research progress of ultrafast nonlinear optics and applications of nanostructures with localized plasmon resonance[J]. Chinese Journal of Lasers, 44, 0703005(2017).

    [15] Zhang S, Genov D A, Wang Y et al. Plasmon-induced transparency in metamaterials[J]. Physical Review Letters, 101, 047401(2008). http://europepmc.org/abstract/med/18764363

    [16] Verellen N, Sonnefraud Y, Sobhani H et al. Fano resonances in individual coherent plasmonic nanocavities[J]. Nano Letters, 9, 1663-1667(2009). http://pubs.acs.org/doi/abs/10.1021/nl9001876

    [17] Huang Y H, Xue B P. Research of multiple Fano resonances in plasmonic octamer clusters[J]. Laser & Optoelectronics Progress, 52, 062401(2015).

    [18] Huang Y H, Yin L Y, Cai D J et al. Modulation of Fano resonance in plasmonic quadrumer clusters[J]. Laser & Optoelectronics Progress, 52, 022401(2015).

    [19] Arif E C, Hatice A. Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing[J]. ACS Nano, 6, 9989-9995(2012). http://pubs.acs.org/doi/abs/10.1021/nn303643w

    [20] Li J, Liu T Z, Zheng H et al. Higher order Fano resonances and electric field enhancements in disk-ring plasmonic nanostructures with double symmetry breaking[J]. Plasmonics, 9, 1439-1445(2014). http://link.springer.com/article/10.1007/s11468-014-9761-9

    [21] Wang J, Fan C, He J et al. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity[J]. Optics Express, 21, 2236-2244(2013). http://www.opticsinfobase.org/abstract.cfm?URI=oe-21-2-2236

    [22] Wu C, Khanikaev A B, Adato R et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers[J]. Nature Materials, 11, 69-75(2012). http://www.nature.com/sifinder/10.1038/nmat3161

    [23] Yanik A A, Cetin A E, Huang M et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances[J]. Proceedings of the National Academy of Sciences, 108, 11784-11789(2011). http://www.jstor.org/stable/27978900

    [24] Hao F, Nordlander P, Sonnefraud Y et al. Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing[J]. ACS Nano, 3, 643-652(2009). http://www.ncbi.nlm.nih.gov/pubmed/19309172

    [25] Ye J, Wen F, Sobhani H et al. Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS[J]. Nano Letters, 12, 1660-1667(2012). http://www.ncbi.nlm.nih.gov/pubmed/22339688

    [26] He J, Fan C, Ding P et al. Near-field engineering of Fano resonances in plasmonic assembly for maximizing CARS enhancements[J]. Scientific Reports, 6, 20777(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC4748302/

    [27] Gersten J. Disk plasma oscillations[J]. The Journal of Chemical Physics, 77, 6285-6288(1982).

    [28] Melchior P, Kilbane D, Vesseur E J et al. Photoelectron imaging of modal interference in plasmonic whispering gallery cavities[J]. Optics Express, 23, 31619-31626(2015). http://www.opticsinfobase.org/abstract.cfm?uri=oe-23-25-31619

    [29] Yang J, Sun Q, Yu H et al. Spatial evolution of the near-field distribution on planar gold nanoparticles with the excitation wavelength across dipole and quadrupole modes[J]. Photonics Research, 5, 187-193(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ170526000223QnTqWs

    [30] Yannick S, Verellen N, Sobhani H et al. Experimental realization of subradiant, superradiant, and Fano Resonances in ring/disk plasmonic nanocavities[J]. ACS Nano, 4, 1664-1670(2010). http://pubs.acs.org/doi/abs/10.1021/nn901580r

    [31] Zhang Q, Wen X L, Li G et al. Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities[J]. ACS Nano, 7, 11071-11078(2013). http://www.ncbi.nlm.nih.gov/pubmed/24215162

    [32] Fano U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review, 124, 1866-1878(1961). http://ptps.oxfordjournals.org/external-ref?access_num=10.1103/PhysRev.124.1866&link_type=DOI

    [33] Jonathan A F, Kui B, Chi H W et al. Fano-like interference in self-assembled plasmonic quadrumer clusters[J]. Nano Letters, 10, 4680-4685(2010). http://www.ncbi.nlm.nih.gov/pubmed/20923179

    [34] Miroshnichenko A E. SergeJ F, Yuri S K, et al. Fano resonances in nanoscale structures[J]. Review of Modern Physics, 82, 2257-2298(2010).

    [35] Wan W, Zheng W, Chen Y F et al. From Fano-like interference to superscattering with a single metallic nanodisk[J]. Nanoscale, 6, 9093-9102(2014). http://europepmc.org/abstract/med/24975582

    [36] Cai D J, Huang Y H, Wang W J et al. Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry[J]. Journal of Physical Chemistry C, 119, 4252-4260(2015). http://pubs.acs.org/doi/abs/10.1021/jp512003b

    [37] Fang Z Y, Cai J Y, Nordlander P et al. Removing a wedge from a metallic nanodisk reveals a Fano resonance[J]. Nano Letters, 11, 4475-4479(2011). http://pubs.acs.org/doi/abs/10.1021/nl202804y

    [38] Zhang S, Li G C, Chen Y Q et al. Pronounced Fano resonance in single gold split nanodisks with 15-nm split gaps for intensive second harmonic generation[J]. ACS Nano, 10, 11105-11114(2016). http://www.ncbi.nlm.nih.gov/pubmed/28024358

    [39] He J, Fan C Z, Wang J Q et al. A giant localized field enhancement and high sensitivity in an asymmetric ring by exhibiting Fano resonance[J]. Journal of Optics, 15, 025007(2013). http://adsabs.harvard.edu/abs/2013JOpt...15b5007H

    [40] Wang H, Wu Y P, Lassiter B et al. Symmetry breaking in individual plasmonic nanoparticles[J]. Proceeding of the National Academy of Sciences of the United States of America, 103, 10856-10860(2006). http://www.ncbi.nlm.nih.gov/pubmed/16829573

    [41] Shang W Y, Xiao F J, Zhu W R et al. Fano resonance with high local field enhancement under azimuthally polarized excitation[J]. Scientific Reports, 7, 1049(2017). http://europepmc.org/articles/PMC5430847/

    [42] Shu J, Gao W L, Xu Q F et al. Fano resonance in concentric ring apertures[J]. Lasers & Electro-Optics, 21, 11101-11106(2013). http://www.opticsinfobase.org/abstract.cfm?uri=oe-21-9-11101

    [43] Bachelier G, Russier-Antoine I, Benichou E et al. Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles[J]. Physical Review Letters, 101, 197401(2008). http://europepmc.org/abstract/MED/19113308

    [44] Pena-Rodriguez O, Pal U, Campoyquiles M et al. Enhanced Fano resonance in asymmetrical Au∶Ag heterodimers[J]. Journal of Physical Chemistry C, 115, 6410-6414(2011). http://pubs.acs.org/doi/abs/10.1021/jp200495x

    [45] Hao F, Nordlander P, Burnett M T et al. Enhanced tenability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities[J]. Physical Review B, 76, 245417(2007). http://adsabs.harvard.edu/abs/2007phrvb..76x5417h

    [46] Zhang Y, Jia T Q, Zhang H M et al. Fano resonances in disk-ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode[J]. Optics Letters, 37, 4919-4921(2012). http://europepmc.org/abstract/MED/23202090

    [47] Zhang Q, Xiao J J. Multiple reversals of optical binding force in plasmonic disk-ring nanostructures with dipole-multipole Fano resonances[J]. Optics Letters, 38, 4240-4243(2013). http://www.opticsinfobase.org/abstract.cfm?uri=ol-38-20-4240

    [48] Rahmani M, Tahmasebi T, Lin Y et al. Influence of plasmon destructive interferences on optical properties of gold planar quadrumers[J]. Nanotechnology, 22, 245204(2011). http://www.ncbi.nlm.nih.gov/pubmed/21543829

    [49] Rahmani M, Lukiyanchuk B. Nguyen T T V, et al. Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers[J]. Optical Materials Express, 19, 4949-4956(2011). http://europepmc.org/abstract/MED/21445130

    [50] Lassiter J B, Sobhani H, Fan J A et al. Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability[J]. Nano Letters, 10, 3184-3189(2010). http://pubs.acs.org/doi/abs/10.1021/nl102108u

    [51] Liu S D, Yang Z, Liu R P et al. Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings[J]. ACS Nano, 6, 6260-6271(2012). http://pubs.acs.org/doi/abs/10.1021/nn3017052

    [52] Fang Z Y, Wang Y M, Liu Z et al. Plasmon-induced doping of graphene[J]. ACS Nano, 6, 10222-10228(2012). http://europepmc.org/abstract/MED/22998468

    [53] Dregely D, Hentschel M, Giessen H et al. Excitation and tuning of higher-order Fano resonances in plasmonic oligomer clusters[J]. ACS Nano, 5, 8202-8211(2011). http://www.tandfonline.com/servlet/linkout?suffix=CIT0155&dbid=8&doi=10.1080%2F14737159.2018.1440208&key=21879759

    [54] Shan H Y, Zu S, Fang Z Y et al. Research progress in ultrafast dynamics of plasmonic hot electrons[J]. Laser & Optoelectronics Progress, 54, 030002(2017).

    [55] Li B W, Zu S, Fang Z Y et al. Single nanoparticle plasmonic electro-optic modulator based on MoS2 monolayers[J]. ACS Nano, 11, 9720-9727(2017). http://pubs.acs.org/doi/suppl/10.1021/acsnano.7b05479

    [56] Fang Z Y, Liu Z, Wang Y M et al. Graphene-antenna sandwich photodetector[J]. Nano Letters, 12, 3808-3813(2012).

    [57] Zu S, Bao Y J, Fang Z Y et al. Planar plasmonic chiral nanostructures[J]. Nanoscale, 8, 3900-3905(2016).

    [58] Chang W S, Lassiter J B, Swanglap P et al. A plasmonic Fano switch[J]. Nano Letters, 12, 4977-4982(2012).

    Jian Cui, Boyu Ji, Jingquan Lin. Plasmonic Fano Resonance in Metallic Disk-Like Nanostructure System[J]. Laser & Optoelectronics Progress, 2018, 55(6): 060002
    Download Citation