• Infrared and Laser Engineering
  • Vol. 53, Issue 5, 20230688 (2024)
Shuang Wu1,2, Jianyi Zhang1, Honglei Chen1, and Ruijun Ding1
Author Affiliations
  • 1Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/IRLA20230688 Cite this Article
    Shuang Wu, Jianyi Zhang, Honglei Chen, Ruijun Ding. Adaptive-gain infrared focal plane array readout circuit with anti-fold CDS[J]. Infrared and Laser Engineering, 2024, 53(5): 20230688 Copy Citation Text show less
    The operating principle of CTIA. (a) Schematic of CTIA; (b) Schematic of cascode; (c) Time sequence and \begin{document}${V}_{{\rm{out}}\_{\rm{ctia}}}$\end{document}; (d) \begin{document}${V}_{{\rm{out}}\_{\rm{ctia}}}$\end{document} vs \begin{document}${I}_{{\rm{det}}}$\end{document}
    Fig. 1. The operating principle of CTIA. (a) Schematic of CTIA; (b) Schematic of cascode; (c) Time sequence and Unknown environment 'document'; (d) Unknown environment 'document' vs Unknown environment 'document'
    (a) The proposed AGROIC schematic; (b) Equivalent circuit after \begin{document}${M}_{{\rm{ag}}}$\end{document} is turned on
    Fig. 2. (a) The proposed AGROIC schematic; (b) Equivalent circuit after Unknown environment 'document' is turned on
    (a) \begin{document}${V}_{{\rm{out}}\_{\rm{AG}}}$\end{document} vs time; (b)\begin{document}${V}_{{\rm{out}}\_{\rm{AG}}}$\end{document} vs \begin{document}${I}_{{\rm{det}}}$\end{document} at \begin{document}$ {t}_{s} $\end{document}
    Fig. 3. (a) Unknown environment 'document' vs time; (b)Unknown environment 'document' vs Unknown environment 'document' at Unknown environment 'document'
    (a) \begin{document}${V}_{{\rm{out}}\_{\rm{ctia}}}$\end{document}vs time; (b) \begin{document}${V}_{{\rm{out}}\_{\rm{ctia}}}$\end{document}vs \begin{document}${I}_{{\rm{det}}}$\end{document} when \begin{document}$ {T}_{i}=28\;\mathrm{\text{μs}} $\end{document}; (c) \begin{document}${V}_{{\rm{out}}\_{\rm{AG}}}$\end{document}vs time; (d) \begin{document}${V}_{{\rm{out}}\_{\rm{AG}}}$\end{document}vs \begin{document}${I}_{{\rm{det}}}$\end{document} when \begin{document}$ {T}_{i}=28\;\mathrm{\text{μs}} $\end{document}
    Fig. 4. (a) Unknown environment 'document'vs time; (b) Unknown environment 'document'vs Unknown environment 'document' when Unknown environment 'document'; (c) Unknown environment 'document'vs time; (d) Unknown environment 'document'vs Unknown environment 'document' when Unknown environment 'document'
    Schematic of three CDS circuits. (a) Fully-passive CDS; (b) Voltage buffer-based CDS; (c) Amplifier-based CDS[11]
    Fig. 5. Schematic of three CDS circuits. (a) Fully-passive CDS; (b) Voltage buffer-based CDS; (c) Amplifier-based CDS[11]
    The combined CTIA-CDS circuit. (a) Schematic; (b) Time sequence
    Fig. 6. The combined CTIA-CDS circuit. (a) Schematic; (b) Time sequence
    (a) Sample of \begin{document}${V}_{{\rm{out}}\_{\rm{ctia}}}$\end{document}; (b) The sample-hold voltage \begin{document}${V}_{{\rm{sh}}}$\end{document} vs \begin{document}${I}_{{\rm{det}}}$\end{document}
    Fig. 7. (a) Sample of Unknown environment 'document'; (b) The sample-hold voltage Unknown environment 'document' vs Unknown environment 'document'
    (a) The schematic of anti-fold CDS; (b) Equivalent circuit after \begin{document}${M}_{{\rm{af}}}$\end{document} is turned on
    Fig. 8. (a) The schematic of anti-fold CDS; (b) Equivalent circuit after Unknown environment 'document' is turned on
    (a) \begin{document}${V}_{{\rm{sh}}\_{\rm{AF}}}$\end{document} vs time; (b) \begin{document}${V}_{{\rm{sh}}\_{\rm{AF}}}$\end{document} vs \begin{document}${I}_{{\rm{det}}}$\end{document}
    Fig. 9. (a) Unknown environment 'document' vs time; (b) Unknown environment 'document' vs Unknown environment 'document'
    \begin{document}${V}_{{\rm{sh}}\_{\rm{AGAF}}}$\end{document} of combined AGROIC-AFCDS vs \begin{document}${I}_{{\rm{det}}}$\end{document}. (a) \begin{document}${V}_{{\rm{b}}\_{\rm{af}}} < {V}_{{\rm{b}}\_{\rm{ag}}}$\end{document}; (b) \begin{document}${V}_{{\rm{b}}\_{\rm{ag}}} < {V}_{{\rm{b}}\_{\rm{af}}}$\end{document}
    Fig. 10. Unknown environment 'document' of combined AGROIC-AFCDS vs Unknown environment 'document'. (a) Unknown environment 'document'; (b) Unknown environment 'document'
    (a) \begin{document}${V}_{{\rm{sh}}}$\end{document}&\begin{document}${V}_{{\rm{cds}}}$\end{document}vs time; (b) \begin{document}${V}_{{\rm{sh}}}$\end{document}vs \begin{document}${I}_{{\rm{det}}}$\end{document} when \begin{document}$ {T}_{i}=28\;\mathrm{\text{μs}} $\end{document}; (c) \begin{document}${V}_{{\rm{sh}}\_{\rm{AGAF}}}$\end{document}&\begin{document}${V}_{{\rm{cds}}\_{\rm{AGAF}}}$\end{document}vs time; (d) \begin{document}${V}_{{\rm{sh}}\_{\rm{AGAF}}}$\end{document}vs \begin{document}${I}_{{\rm{det}}}$\end{document} when \begin{document}$ {T}_{i}=28\;\mathrm{\text{μs}} $\end{document}
    Fig. 11. (a) Unknown environment 'document'&Unknown environment 'document'vs time; (b) Unknown environment 'document'vs Unknown environment 'document' when Unknown environment 'document'; (c) Unknown environment 'document'&Unknown environment 'document'vs time; (d) Unknown environment 'document'vs Unknown environment 'document' when Unknown environment 'document'
    The analog signal path block diagram
    Fig. 12. The analog signal path block diagram
    The block diagram of readout circuit
    Fig. 13. The block diagram of readout circuit
    Integration sample timing
    Fig. 14. Integration sample timing
    (a) The block diagram of testing system; (b) Photo of the testing platform
    Fig. 15. (a) The block diagram of testing system; (b) Photo of the testing platform
    (a) The schematic of testing circuit; (b) The timing sequence of testing
    Fig. 16. (a) The schematic of testing circuit; (b) The timing sequence of testing
    The output noise acquisition. (a) The histogram of 100×100 segment when CDS-off; (b) The histogram of 100×100 segment when CDS-on
    Fig. 17. The output noise acquisition. (a) The histogram of 100×100 segment when CDS-off; (b) The histogram of 100×100 segment when CDS-on
    The testing results of adaptive-gain function
    Fig. 18. The testing results of adaptive-gain function
    The testing results of anti-fold function
    Fig. 19. The testing results of anti-fold function
    Shuang Wu, Jianyi Zhang, Honglei Chen, Ruijun Ding. Adaptive-gain infrared focal plane array readout circuit with anti-fold CDS[J]. Infrared and Laser Engineering, 2024, 53(5): 20230688
    Download Citation