• Chinese Journal of Quantum Electronics
  • Vol. 39, Issue 4, 477 (2022)
Zeyu WANG*, Qi CUI, Xiaohu HE, Danhua LU, Xuanbing QIU, Qiusheng HE, Yunzhong LAI, and Chuanliang LI
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2022.04.001 Cite this Article
    WANG Zeyu, CUI Qi, HE Xiaohu, LU Danhua, QIU Xuanbing, HE Qiusheng, LAI Yunzhong, LI Chuanliang. Computational and spectroscopic investigation of two lowest electronic states of I+2[J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 477 Copy Citation Text show less
    References

    [1] Frost D C, McDowell C A, Vroom D A. Photoelectron spectra of the halogens and the hydrogen halides [J]. The Journal of Chemical Physics, 1967, 46(11): 4255-4259.

    [2] Cornford A B, Frost D C, McDowell C A, et al. Photoelectron spectra of the halogens [J]. The Journal of Chemical Physics, 1971, 54(6): 2651-2657.

    [3] Evans S, Orchard A F. The helium-(I) photoelectron spectra of some halogens and diatomic interhalogens [J]. Inorganica Chimica Acta, 1971, 5: 81-85.

    [4] Potts A W, Price W C. Photoelectron spectra of the halogens and mixed halides ICl and IBr [J]. Transactions of the Faraday Society, 1971, 67: 1242.

    [5] Higginson B R, Lloyd D R, Roberts P J. Variable temperature photoelectron spectroscopy. The adiabatic ionization potential of the iodine molecule [J]. Chemical Physics Letters, 1973, 19(4): 480-482.

    [6] Lonkhuyzen H V, De Lange C A. High-resolution UV photoelectron spectroscopy of diatomic halogens [J]. Chemical Physics, 1984, 89(2): 313-322.

    [7] Tuckett R P, Castellucci E, Bonneau M, et al. Coincidence studies of fluorescence and dissociation processes in electronic excited states of I+2, Br+2, IBr+ and ICl+ [J]. Chemical Physics, 1985, 92(1): 43-57.

    [8] Horner J P, Eland J H D. The A2Πu-X2Πg emission of I+2 [J]. Chemical Physics Letters, 1984, 110(1): 29-31.

    [9] Mason S M, Tuckett R P. The A2Πu-X2Πg emission spectrum of I+2 [J]. Chemical Physics Letters, 1989, 160(5-6): 575-580.

    [10] Yencha A J, Cockett M C R, Goode J G, et al. Threshold photoelectron spectroscopy of I2 [J]. Chemical Physics Letters, 1994, 229(4-5): 347-352.

    [11] Cockett M C R, Goode J G, Lawley K P, et al. Zero kinetic energy photoelectron spectroscopy of Rydberg excited molecular iodine [J]. The Journal of Chemical Physics, 1995, 102(13): 5226-5234.

    [12] Cockett M C. Evidence for spin-orbit autoionization in the zero kinetic energy photoelectron spectrum of molecular iodine ionized via the valence B3Π+0u state [J]. The Journal of Physical Chemistry, 1995, 99(44): 16228-16233.

    [13] Cockett M C R, Donovan R J, Lawley K P. Zero kinetic energy pulsed field ionization (ZEKE-PFI) spectroscopy of electronically and vibrationally excited states of I+2: The A2Π3/2,u state and a new electronic state, the a 4Σ-u state [J]. The Journal of Chemical Physics, 1996, 105(9): 3347-3360.

    [14] Deng L H, Zhu Y Y, Li C L, et al. High-resolution observation and analysis of the I+2 A2Π3/2,u-X2Π3/2,?g system [J]. The Journal of Chemical Physics, 2012, 137(5): 054308.

    [15] Mu X L, Li C L, Deng L H, et al. Spectra of I+2 for possible measurement of α and μ constant [J]. Acta Physica Sinica, 2017, 66(23): 233301.

    [16] Li J Q, Balasubramanian K. Spectroscopic properties and potential energy curves of I2 and I+2 [J]. Journal of Molecular Spectroscopy, 1989, 138(1): 162-180.

    [17] de Jong W A, Visscher L, Nieuwpoort W C. Relativistic and correlated calculations on the ground, excited, and ionized states of iodine [J]. The Journal of Chemical Physics, 1997, 107(21): 9046-9058.

    [18] Werner H J, Knowles P J, Knizia G, et al. Molpro: A general-purpose quantum chemistry program package [J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2(2): 242-253.

    [19] Peterson K A, Yousaf K E. Molecular core-valence correlation effects involving the post-d elements Ga-Rn: Benchmarks and new pseudopotential-based correlation consistent basis sets [J]. The Journal of Chemical Physics, 2010, 133(17): 174116.

    [20] Le Roy R J. LEVEL: A computer program for solving the radial Schrodinger equation for bound and quasibound levels [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 186: 167-178.

    [21] Bernath P F. Spectra of Atoms and Molecules [M]. Oxford: Oxford University Press, 2005: 210-212.

    [22] Li C L, Li Y C, Ji Z H, et al. Candidates for direct laser cooling of diatomic molecules with the simplest 1Σ-1Σ electronic system [J]. Physical Review A, 2018, 97(6): 062501.

    [23] Le Roy R J. RKR1: A computer program implementing the first-order RKR method for determining diatomic molecule potential energy functions [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 186: 158-166.

    [24] Western C M. PGOPHER: A program for simulating rotational, vibrational and electronic spectra [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 186: 221-242.

    [25] Rice O K. Perturbations in molecules and the theory of predissociation and diffuse spectra. II [J]. Physical Review, 1930, 35(12): 1551-1558.

    [26] Zhou R, Li C L, He X H, et al. Spectroscopic properties of low-lying excited electronic states for CF- anion based on ab?initio calculation [J]. Acta Physica Sinica, 2017, 66(2): 023101.

    [27] Herzberg G. Molecular Spectra and Molecular Structure. Vol.1: Spectra of Diatomic Molecules [M]. 2nd ed., New York: Van Nostrand Reinhold, 1950: 405-408.

    WANG Zeyu, CUI Qi, HE Xiaohu, LU Danhua, QIU Xuanbing, HE Qiusheng, LAI Yunzhong, LI Chuanliang. Computational and spectroscopic investigation of two lowest electronic states of I+2[J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 477
    Download Citation