• Journal of Innovative Optical Health Sciences
  • Vol. 14, Issue 6, 2150019 (2021)
A. Palader1、*, H. Dekker2, M. Hyvrinen1, L. Rieppo3, I. Lyijynen4、5, E. A. J. M. Schulten2, C. M. Ten Bruggenkate2, A. Koistinen4, A. Kullaa1、6, and M. J. Turunen4、5
Author Affiliations
  • 1Institute of Dentistry, University of Eastern Finland P.O. Box 1627, 70211 Kuopio, Finland
  • 2Department of Oral and Maxillofacial Surgery/Oral Pathology Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA) Vrije Universiteit Amsterdam De Boelelaan 1117 1081 HV Amsterdam, The Netherlands
  • 3Research Unit of Medical Imaging Physics and Technology, University of Oulu P.O. Box 5000 FI-90014 University of Oulu, Finland
  • 4SIB Labs, University of Eastern Finland P.O. Box 1627, 70211 Kuopio, Finland
  • 5Department of Applied Physics, University of Eastern Finland P.O. Box 1627, 70211 Kuopio, Finland
  • 6Educational Dental Clinic, Kuopio University Hospital P.O. Box 1627, 70211 Kuopio, Finland
  • show less
    DOI: 10.1142/s179354582150019x Cite this Article
    A. Palader, H. Dekker, M. Hyvrinen, L. Rieppo, I. Lyijynen, E. A. J. M. Schulten, C. M. Ten Bruggenkate, A. Koistinen, A. Kullaa, M. J. Turunen. Long-term changes in mandibular bone microchemical quality after radiation therapy and underlying systemic malignancy: A pilot study[J]. Journal of Innovative Optical Health Sciences, 2021, 14(6): 2150019 Copy Citation Text show less
    References

    [1] S. Delanian, J. L. Lefaix, "The radiation-induced fibroatrophic process: therapeutic perspective via the antioxidant pathway," Radiother. Oncol. 73, 119–131 (2004).

    [2] S. Nabil, N. Samman, "Incidence and prevention of osteoradionecrosis after dental extraction in irradiated patients: a systematic review," Int. J. Oral Maxillofac. Surg. 40, 229–243 (2011).

    [3] L. Chambrone, J. Mandia, Jr., J. A. Shibli, G. A. Romito, M. Abrahao, "Dental implants installed in irradiated jaws: A systematic review," J. Dent. Res. 92, 119S–130S (2013).

    [4] H. Fonseca, D. Moreira-Gon?alves, H. J. A. Coriolano, J. A. Duarte, "Bone quality: The determinants of bone strength and fragility," Sports Med. 44, 37–53 (2014).

    [5] D. Chappard, M. F. Basle, E. Legrand, M. Audran, "New laboratory tools in the assessment of bone quality," Osteoporos. Int. 22, 2225–2240 (2011).

    [6] E. A. B. Hughes, T. E. Robinson, D. B. Bassett, S. C. Cox, L. M. Grover, "Critical and diverse roles of phosphates in human bone formation," J. Mater. Chem. B 21, 7460–7470 (2019).

    [7] C. Rey, B. Collins, T. Goehl, I. R. Dickson, M. J. Glimcher, "The carbonate environment in bone mineral: A resolution-enhanced Fourier transform infrared spectroscopy study," Calcif. Tissue Int. 45, 157–164 (1989).

    [8] Y. Bala, D. Farlay, G. Boivin, "Bone mineralization: from tissue to crystal in normal and pathological contexts," Osteoporos. Int. 24, 2153–2166 (2013).

    [9] Y. Bala, D. Farlay, P. D. Delmas, P. J. Meunier, G. Boivin, "Time sequence of secondary mineralization and microhardness in cortical and cancellous bone from ewes," Bone 46, 1204–1212 (2010).

    [10] N. Kourkoumelis, X. Zhang, Z. Lin, J. Wang, "Fourier transform infrared spectroscopy of bone tissue: Bone quality assessment in preclinical and clinical applications of osteoporosis and fragility fracture," Clinic. Rev. Bone Miner. Metab. 17, 24– 39 (2019).

    [11] A. Boskey, N. Pleshko Camacho, "FT-IR imaging of native and tissue-engineered bone and cartilage," Biomaterials 28, 2465–2478 (2007).

    [12] L. Spevak, C. R. Flach, T. Hunter, R. Mendelsohn, A. Boskey, "Fourier transform infrared spectroscopic imaging parameters describing acid phosphate substitution in biologic hydroxyapatite," Calcif. Tissue Int. 92, 418–428 (2013).

    [13] E. P. Paschalis, K. Verdelis, S. B. Doty, A. L. Boskey, R. Mendelsohn, M. Yamauchi, "Spectroscopic characterization of collagen crosslinks in bone," J. Bone Miner. Res. 16, 1821–1828 (2001).

    [14] M. Saito, K. Marumo, "Collagen cross-links as a determinant of bone quality: A possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus," Osteoporos. Int. 21, 195–214 (2009)."

    [15] F. Schmidt, E. Zimmermann, G. Campbell, G. Sroga, K. Püschel, M. Amling, S. Y. Tang, D. Vashishth, B. Busse, "Assessment of collagen quality associated with non-enzymatic cross-links in human bone using Fourier-transform infrared imaging," Bone 97, 243–251 (2016).

    [16] H. D. Barth, E. A. Zimmermann, E. Schaible, S. Y. Tang, T. Alliston, R. O. Ritchie, "Characterization of the effects of X-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone," Biomaterials 32, 8892–8904 (2011).

    [17] M. E. Oest, T. A. Damron, "Focal therapeutic irradiation induces an early transient increase in bone glycation," Radiat. Res. 181, 439–443 (2014).

    [18] D. E. Green, B. J. Adler, M. E. Chan, J. J. Lennon, A. S. Acerbo, L. M. Miller, C. T. Rubin, "Altered composition of bone as triggered by irradiation facilitates the rapid erosion of the matrix by both cellular and physicochemical processes," PLoS ONE 8, e64952 (2013).

    [19] P. H. J. O. Limirio, P. B. F. Soares, E. T. P. Emi, C. C. A. Lopes, F. S. Rocha, J. D. Batista, G. D. Rabelo, P. Dechichi, "Ionizing radiation and bone quality: Time-dependent effects," Radiat. Oncol. 14, 15 (2019).

    [20] M. Damek-Poprawa, S. Both, A. C. Wright, A. Maity, S. O. Akintoye, "Onset of mandible and tibia osteoradionecrosis: a comparative pilot study in the rat," Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 115, 201–211 (2013).

    [21] R. Jilka, "The relevance of mouse models for investigating age-related bone loss in humans," J. Gerontol. A, Biol. Sci. Med. Sci. 68, 1209–1217 (2013).

    [22] H. Dekker, N. Bravenboer, D. van Dijk, E. Bloemena, D. H. F. Rietveld, C. M. Ten Bruggenkate, E. A. J. M. Schulten, "The irradiated human mandible: A quantitative study on bone vascularity," Oral Oncol. 87, 126–130 (2018).

    [23] R. J. Lakshmi, M. Alexander, J. Kurien, K. K. Mahato, V. B. Kartha, "Osteoradionecrosis (ORN) of the mandible: A laser Raman spectroscopic study," Appl. Spectrosc. 57, 1100–1116 (2003).

    [24] S. Singh, I. Parviainen, H. Dekker, E. Schulten, C. ten Bruggenkate, N. Bravenboer, J. J. Mikkonen, M. J. Turunen, A. P. Koistinen, A. M. Kullaa, "Raman microspectroscopy demonstrates alterations in human mandibular bone after radiotherapy," J. Anal. Bioanal. Tech. 6, 1000276 (2015).

    [25] H. Isaksson, M. J. Turunen, L. Rieppo, S. Saarakkala, I. S. Tamminen, J. Rieppo, H. Kr€oger, J. S. Jurvelin, "Infrared spectroscopy indicates altered bone turnover and remodeling activity in renal osteodystrophy," J. Bone Miner. Res. 25, 1360–1366 (2010).

    [26] E. P. Paschalis, E. DiCarlo, F. Betts, P. Sherman, R. Mendelsohn, A. L. Boskey, "FTIR microspectroscopic analysis of human osteonal bone," Calcif. Tissue Int. 59, 480–487 (1996).

    [27] Y. Kobrina, M. J. Turunen, S. Saarakkala, J. S. Jurvelin, M. Hauta-Kasari, H. Isaksson, "Cluster analysis of infrared spectra of rabbit cortical bone samples during maturation and growth," Analyst 135, 3147–3155 (2010).

    [28] D. Southern, G. Lutz, A. Bracilovic, P. West, M. Spevak, N. P. Camacho, S. Doty, "Histological and molecular structure characterization of annular collagen after intradiskal electrothermal annuloplasty, HSS J. 2, 49–54 (2006).

    [29] P. A. West, M. P. G. Bostrom, P. A, Torzilli, N. P. Camacho, "Fourier transform infrared spectral analysis of degenerative cartilage: An infrared fiber optic probe and imaging study," Appl. Spectrosc. 58, 376–381 (2004).

    [30] E. P. Paschalis, S. Gamsjaeger, D. N. Tatakis, N. Hassler, S. P. Robins, K. Klaushofer, "Fourier transform infrared spectroscopic characterization of mineralizing type I collagen enzymatic trivalent cross-links," Calcif. Tissue Int. 96, 18–29 (2015).

    [31] M. M. Curi, C. L. Cardoso, H. G. de Lima, L. P. Kowalski, M. D. Martins, "Histopathologic and histomorphometric analysis of irradiation injury in bone and the surrounding soft tissues of the jaws," J. Oral Maxillofac. Surg. 74, 190–199 (2016).

    [32] F. Bronner, M. C. Farach-Carson, Bone and Cancer, 1st Edition, Springer London, London (2009).

    [33] Y. Liu, X. Cao, "Characteristics and significance of the pre-metastatic niche," Cancer Cell 30, 668–681 (2016).

    [34] D. Chappard, G. Mabilleau, C. Masson, A. Tahla, E. Legrand, "Metaplastic woven bone in bone metastases: A Fourier-transform infrared analysis and imaging of bone quality (FTIR)," Morphologie 102, 69–77 (2018).

    [35] T. J. Gal, T. Munoz-Antonia, C. A. Muro-Cacho, D. W. Klotch, "Radiation effects on osteoblasts in vitro: A potential role in osteoradionecrosis," Arch. Otolaryngol. Head Neck Surg. 126, 1124–1128 (2000).

    [36] K. H. Szymczyk, I. M. Shapiro, C. S. Adams, "Ionizing radiation sensitizes bone cells to apoptosis," Bone 34, 148–156 (2004).

    [37] B. Gong, M. E. Oest, K. A. Mann, T. A. Damron, M. D. Morris, "Raman spectroscopy demonstrates prolonged alteration of bone chemical composition following extremity localized irradiation," Bone 57, 252–258 (2013).

    [38] B. R. Chrcanovic, P. Reher, A. A. Sousa, M. Harris, "Osteoradionecrosis of the jaws — a current overview — part 1: Physiopathology and risk and predisposing factors," Oral Maxillofac. Surg. 14, 3–16 (2010).

    [39] D. R. Young, P. Virolainen, N. Inoue, F. J. Frassica, E. Y. Chao, "The short-term effects of cisplatin chemotherapy on bone turnover," J. Bone Miner. Res. 12, 1874–1882 (1997).

    [40] M. J. Turunen, S. Saarakkala, H. J. Helminen, J. S. Jurvelin, H. Isaksson, "Age-related changes in organization and content of the collagen matrix in rabbit cortical bone," J. Orthop. Res. 30, 435–442 (2012).

    [41] N. Pleshko, A. Boskey, R. Mendelsohn, "Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals," Biophys. J. 60, 786–793 (1991).

    [42] C. Marcott, R. C. Reeder, E. P. Paschalis, D. N. Tatakis, A. L. Boskey, R. Mendelsohn, "Infrared microspectroscopic imaging of biomineralized tissues using a mercury-cadmium-telluride focal-plane array detector," Cell Mol. Biol. (Noisy-le-grand) 44, 109–115 (1998).

    [43] E. Durchschlag, E. P. Paschalis, R. Zoehrer, P. Roschger, P. Fratzl, R. Recker, R. Phipps, K. Klaushofer, "Bone material properties in trabecular bone from human iliac crest biopsies after 3- and 5-year treatment with risedronate," J. Bone Miner. Res. 21, 1581–1590 (2006).

    [44] H. W. Courtland, P. Nasser, A. B. Goldstone, L. Spevak, A. L. Boskey, K. J. Jepsen, "Fourier transform infrared imaging microspectroscopy and tissue-level mechanical testing reveal intraspecies variation in mouse bone mineral and matrix composition," Calcif. Tissue Int. 83, 342–353 (2008).

    [45] M. J. Turunen, S. Saarakkala, L. Rieppo, H. J. Helminen, J. S. Jurvelin, H. Isaksson, "Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone," Appl. Spectrosc. 65, 595–603 (2011).

    [46] D. Farlay, Y. Bala, S. Rizzo, S. Bare, J. M. Lappe, R. Recker, G. Boivin, "Bone remodeling and bone matrix quality before and after menopause in healthy women," Bone 128, 115030 (2019).

    [47] M. J. Turunen, V. Prantner, J. S. Jurvelin, H. Kr€oger, H. Isaksson, "Composition and microarchitecture of human trabecular bone change with age and differ between anatomical locations," Bone 54, 118–125 (2013).

    [48] D. B. Burr, "Changes in bone matrix properties with aging," Bone 120, 85–93 (2019).

    A. Palader, H. Dekker, M. Hyvrinen, L. Rieppo, I. Lyijynen, E. A. J. M. Schulten, C. M. Ten Bruggenkate, A. Koistinen, A. Kullaa, M. J. Turunen. Long-term changes in mandibular bone microchemical quality after radiation therapy and underlying systemic malignancy: A pilot study[J]. Journal of Innovative Optical Health Sciences, 2021, 14(6): 2150019
    Download Citation