• Opto-Electronic Engineering
  • Vol. 47, Issue 10, 200315 (2020)
Tang Tao1、2、3, Ma Jiaguang1、2, Chen Hongbin1、2, Fu Chengyu1、2, Yang Hu1、2, Ren Ge1、2, Yang Wenshu1、2, Qi Bo1、2、3、*, Cao Lei1、2, Zhang Mengwei1、2, Bao Qiliang1、2, Tan Yi1、2, Huang Yongmei1、2、3, Mao Yao1、2, and Wang Qiang1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.12086/oee.2020.200315 Cite this Article
    Tang Tao, Ma Jiaguang, Chen Hongbin, Fu Chengyu, Yang Hu, Ren Ge, Yang Wenshu, Qi Bo, Cao Lei, Zhang Mengwei, Bao Qiliang, Tan Yi, Huang Yongmei, Mao Yao, Wang Qiang. A review on precision control methodologies for optical-electric tracking control system[J]. Opto-Electronic Engineering, 2020, 47(10): 200315 Copy Citation Text show less
    References

    [1] Ulich B L. Overview of acquisition, tracking, and pointing system technologies[J]. Proceedings of SPIE, 1988, 887: 40–63.

    [2] Bigley W J. Supervisory control of electro-optic tracking and pointing[J]. Proceedings of SPIE, 1990, 1304: 207–218.

    [3] Boroson D M, Robinson B S, Burianek D A, et al. Overview and status of the lunar laser communications demonstration[J]. Proceedings of SPIE, 2012, 8264: 82460C.

    [9] Fujimoto Y, Murakami T, Oboe R. Advanced motion control for next-generation industrial applications[J]. IEEE Transactions on Industrial Electronics, 2016, 63(3): 1886–1888.

    [10] Sabanovic A. Challenges in motion control systems[J]. IEEJ Journal of Industry Applications, 2017, 6(2): 107–116.

    [11] Campbell M F, Reese E O. SOAR 4.2-m telescope: evolution of drive and pointing performance from early predictions to final testing[J]. Proceedings of SPIE, 2003, 4837: 308–316.

    [12] Stepp L M. Advanced technology optical telescopes V[J]. Pro-ceedings of SPIE, 1994, 2199: 117–125.

    [13] Li G P, Gu BZ, Yang D H, et al. Structure design and analysis of the special mounting and tracking system of the LAMOST[J]. Proceedings of SPIE, 2003, 4837: 284–294.

    [14] Du F J, Wang D X. The ultra-low speed research on friction drive of large telescope[J]. Proceedings of SPIE, 2006, 6274: 627410.

    [15] Rao C, Wei K, Zhang X, et al. First observations on the 127-element adaptive optical system for 1.8m telescope[J]. Proceedings of SPIE - The International Society for Optical En-gineering, 2010, 7654: 76541H.

    [16] Fugate R Q, Ruane R E, Ellerbroek B L. Advanced Technology Optical Telescopes V[J]. SPIE, 1994: 2–9.

    [17] Paris N D. LQG/LTR tilt and tip control for the starfire optical range 3.5-meter telescope’s adaptive optics system[M]. Captain, USAF, March 2006.

    [18] Kimbrell J E, Greenwald D. AEOS 3.67-m telescope primary mirror active control system[J]. Proceedings of SPIE, 1998, 3352: 400–411.

    [19] Leonardi F, Venturini M, Vismara A. PM motors for direct driving optical telescope[J]. IEEE Industry Applications Magazine, 1996, 2(4): 10–16.

    [20] Lewis H. Telescope control systems III[J]. Proceedings of SPIE, 1998, 3351: 361–366.

    [21] BarnardTW,Fencil CR. Digital laser ranging andtrackingusing a compound axis servomechanism[J]. Applied Optics, 1966, 5(4): 497–505.

    [35] Hilkert J M. Inertially stabilized platform technology concepts and principles[J]. IEEE Control Systems Magazine, 2008, 28(1): 26–46.

    [41] Xia Y X, Bao Q L, Liu Z D. A new disturbance feedforward con-trol method for electro-optical tracking system line-of-sight stabi-lization on moving platform[J]. Sensors, 2018, 18(12): 4350.

    [45] Tian J, Yang W S, Peng Z M, et al. Inertial sensor-based multi-loop control of fast steering mirror for line of sight stabilization[J]. Optical Engineering, 2016, 55(11): 111602.

    [46] Bahcall N A. The hubble space telescope[J]. Annals of the New York Academy of Sciences, 1986, 470(1): 331–337.

    [47] Dunham E, Collins P, Reinacher A, et al. SOFIA image motion compensation[J]. Proceedings of SPIE, 2010, 7735: 77355X.

    [48] Ruderman M, Iwasaki M, Chen W H. Motion-control techniques of today and tomorrow: a review and discussion of the chal-lenges of controlled motion[J]. IEEE Industrial Electronics Mag-azine, 2020, 14(1): 41–55.

    [49] Devasia S, Eleftheriou E, Moheimani S O R. A survey of control issues in nanopositioning[J]. IEEE Transactions on Control Systems Technology, 2007, 15(5): 802–823.

    [50] TangT, NiuSX,Ma J G, et al. Areviewon control methodologies of disturbance rejections in optical telescope[J]. Opto-Electronic Advances, 2019, 2(10): 190011.

    [51] Zhao S, Gao Z Q. An active disturbance rejection based ap-proach to vibrationsuppression in two‐inertia systems[J]. Asian Journal of Control, 2013, 15(2): 350–362.

    [52] Chen X, Tomizuka M. Overview and new results in disturbance observer based adaptive vibration rejection with application to advanced manufacturing[J]. International Journal of Adaptive Control and Signal Processing, 2015, 29(11): 1459–1474.

    [53] Hutchinson S, Hager G D, Corke P I. A tutorial on visual servo control[J]. IEEE Transactions on Robotics and Automation, 1996, 12(5): 651–670.

    [54] SunX Y,ZhuXJ, Wang PY, et al. Areview of robot control with visual servoing[C]//2018 IEEE 8th Annual International Confe-rence on CYBER Technology in Automation, Control, and Intel-ligent Systems (CYBER), 2018: 116–121.

    [58] Liu J, Li H W, Deng Y T. Torque ripple minimization of PMSM based on robust ILC via adaptive sliding mode control[J]. IEEE Transactions on Power Electronics, 2018, 33(4): 3655–3671.

    [59] Tang T, Niu S X, Yang T, et al. Vibration rejection of Tip-Tilt mirror using improved repetitive control[J]. Mechanical Systems and Signal Processing, 2019, 116: 432–442.

    [60] Tang T, Niu S X, Chen X Q, et al. Disturbance observer-based control of tip-tilt mirror for mitigating telescope vibrations[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(8): 2785–2791.

    [61] Chen W H, Yang J, Guo L, et al. Disturbance-observer-based control andrelated methods—an overview[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1083–1095.

    [62] Wu C H, Paul R P. Manipulator compliance based on Joint torque control[C]//1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, 1980: 88–94.

    [63] Luh J, Fisher W, Paul R. Joint torque control by a direct feed-back for industrial robots[J]. IEEE Transactions on Automatic Control, 1983, 28(2): 153–161.

    [64] De Jager B. Acceleration assisted tracking control[J]. IEEE Control Systems Magazine, 2002, 14(5): 20–27.

    [65] Younkin G W. Compensating structural dynamics for servo driven industrial machines with acceleration feed-back[C]//Conference Record of the 2004 IEEE Industry Applica-tions Conference, 2004. 39th IAS Annual Meeting, 2004.

    [66] HanJD, Wang YC,TanDL, et al.Acceleration feedback control for direct-drive motor system[C]//2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000), 2000.

    [67] HanJA, Qiu Z C,WangYC, et al. Discontinuous control for harmonic drive system with the damping enhancement of acce-leration feedback[C]//1999 IEEE Canadian Conference on Elec-trical and Computer Engineering, 1999.

    [68] Xu WL, HanJD, Tso SK, et al. Contact transition control via joint acceleration feedback[J]. IEEE Transactions on Industrial Electronics, 2000, 47(1): 150–158.

    [69] Andersen T, Zurbuchen R. Acceleration feedback applied to the 3.6 m telescope servosystem[R]. ESO Technical Report No. 7, 1976.

    [70] Sedghi B, Bauvir B, Dimmler M. Acceleration feedback control on an AT[J]. Proceedings of SPIE, 2008, 7012: 70121Q.

    [71] Ren W, Deng C, Mao Y, et al. Virtual velocity loop based on MEMS accelerometers for optical stabilization control system[J]. Optical Engineering, 2017, 56(8): 085101.

    [72] Choi Y J, Yang K, Chung W K, et al. On the robustness and performance of disturbance observers for second-order sys-tems[J]. IEEE Transactions on Automatic Control, 2003, 48(2): 315–320.

    [73] Kim B K,Chung WK. Advanced disturbance observer design for mechanical positioning systems[J]. IEEE Transactions on In-dustrial Electronics, 2003, 50(6): 1207–1216.

    [74] Shim H,Jo NH. An almost necessaryand sufficient conditionfor robust stability of closed-loop systems with disturbance observ-er[J]. Automatica, 2009, 45(1): 296–299.

    [75] Deng C, Tang T, Mao Y, et al. Enhanced disturbance observer based on acceleration measurement for fast steering mirror systems[J]. IEEE Photonics Journal, 2017, 9(3): 6802211.

    [76] Wang Q, Cai H X, Huang Y M, et al. Acceleration feedback control (AFC) enhanced by disturbance observation and com-pensation (DOC) for high precision tracking in telescope sys-tems[J]. Research in Astronomy and Astrophysics, 2016, 16(8): 51–60.

    [77] Tang T, Zhang T, Du J F, et al. Acceleration feedback of a cur-rent-following synchronized control algorithm for telescope ele-vation axis[J]. Research in Astronomy and Astrophysics, 2016, 16(11): 7–12.

    [78] Tang T, Chen S, Huang X L, et al. Combining load and motor encoders to compensate nonlinear disturbances for high preci-sion tracking control of gear-driven gimbal[J]. Sensors, 2018, 18(3): 754.

    [79] Kennedy P J, Kennedy R L. Direct versus indirect line of sight (LOS) stabilization [J]. IEEE Transactions on Control Systems Technology, 2003, 11(1): 3–15.

    [80] Hilkert J M. A comparison of inertial line-of-sight stabilization techniques using mirrors[J] Proceedings of SPIE, 2004, 5430: 13–22.

    [82] Satyarthi S. Optical line-of-sight steering using gimbaled mir-rors[J]. Proceedings of SPIE, 2014, 9076: 90760E.

    [83] Hilkert J M, Cohen S. Development of mirror stabilization line-of-sight rate equations for an unconventional sen-sor-to-gimbal orientation[J]. Proceedings of SPIE, 2009, 7338: 733803-01–733803-12.

    [84] Luniewicz M F, Murphy J, O'Neil E, et al. Testing the inertial pseudo-star reference unit[J]. Proceedings of SPIE, 1994, 2221: 638–649.

    [85] Algrain M C, Woehrer M K. Determination of attitude jitter in small satellites[J]. Proceedings of SPIE, 1996, 2739: 215–228.

    [86] Walter R E, Danny H, Donaldson J. Stabilized inertial mea-surement system (SIMS)[J]. Proceedings of SPIE, 2002, 4724: 57–68.

    [87] Eckelkamp-Baker D, Sebesta H R. Optical inertial reference unit for kilohertz bandwidth submicroradian optical pointing and jitter control: 20050161578[P]. 2005-07-28.

    [89] Mao Y, Ren W, Yu W, et al. Characteristic analysis and robust control design of double-stage precision stabilized platform[J]. Sensors and Actuators A: Physical, 2019, 300: 111636.

    [90] Tursun M, E.kinat E. Suppression of vibration using passive receptance method with constrained minimization[J]. Shock and Vibration, 2008, 15(6): 639–654.

    [91] Thorby D. Structural Dynamics and Vibration in Practice[M]. Amsterdam: Elsevier/Butterworth-Heinemann, 2008: 21–22.

    [92] De Marneffe B. Active and passive vibration isolation and damping via shunted transducers[D]. Brussels: Universite Libre de Bruxelles, 2007: 67–69, 112–116.

    [93] Lin Z C, Liu K,ZhangW. Inertiallystabilized platform forairborne remote sensing using magnetic bearings[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(1): 288–301.

    [94] De Marneffe B, Avraam M, Deraemaeker A, et al. Vibration isolation of precision payloads: a six-axis electromagnetic relax-ation isolator[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 395–401.

    [95] Mashayekhi M J, Vahdati N. Application of tuned vibration ab-sorbers in fluid mounts [J]. Shock and Vibration, 2009, 16(6): 565–580.

    [96] Trankle T, Pedreiro N, Andersen G. Disturbance free payload flight system analysis and simulation methods[C]//AIAA Guid-ance, Navigation, and Control Conference and Exhibit, 2004.

    [97] Dewell L, Pedreiro N, Blaurock C, et al. Precision telescope pointing and spacecraft vibration isolation for the terrestrial pla-net finder coronagraph[J]. Proceedings of SPIE, 2005, 5899: 589902.

    [98] Chen C C, Hemmati H, Biswas A, et al. Simplified lasercom system architecture using a disturbance-free platform[J]. Pro-ceedings of SPIE, 2006, 6105: 610505.

    [99] Pedreiro N, Carrier A, Lorell K, et al. Disturbance-free payload concept demonstration[C]//AIAA Guidance, Navigation, and Conference Control and Exhibit, 2002.

    [101] Li W P, Huang H. Integrated optimization of actuator placement and vibration control for piezoelectric adaptive trusses[J]. Journal of Sound and Vibration, 2013, 332(7): 17–32.

    [104] Yun H, Liu L, Li Q, et al. Investigation on two-stage vibration suppression and precision pointing for space optical payloads[J]. Aerospace Science and Technology, 2020, 96: 105543.

    [105] Antonello R, Branz F, Sansone F, et al. High precision dual-stage pointing mechanism for miniature satellite laser communication terminals[J]. IEEE Transactions on Industrial Electronics, 2020, doi: 10.1109/TIE.2020.2972452.

    [106] Kaymak Y, Rojas-Cessa R, Feng J H, et al. A survey on acqui-sition, tracking, and pointing mechanisms for mobile free-space optical communications[J]. IEEE Communications Surveys & Tutorials, 2018, 20(2): 1104–1123.

    [107] Talmor A G, Harding Jr H, Chen C C. Two-axis gimbal for air-to-air and air-to-ground laser communications[J]. Proceed-ings of SPIE, 2016, 9739: 97390G.

    [115] Majhi S, Atherton D P. Modified Smith predictor and controller for processes with time delay[J]. IEE Proceedings-Control Theory and Applications, 1999, 146(5): 359–366.

    [116] Feliu-Batlle V, Pérez R R, García F J C, et al. Smith predictor based robust fractional order control: application to water dis-tribution in a main irrigation canal pool[J]. Journal of Process Control, 2009, 19(3): 506–519.

    [117] Ren W, Luo Y, He Q N, et al. Stabilization control of elec-tro-optical tracking system with fiber-optic gyroscope based on modified smith predictor control scheme[J]. IEEE Sensors Journal, 2018, 18(19): 8172–8178.

    [118] Hurák Z, .ezá. M. Delay compensation in a dual-rate cascade visual servomechanism[C]//49th IEEE Conference on Decision and Control (CDC), 2010.

    [119] Zhou X, Mao Y, Zhang C, et al. A comprehensive performance improvement control method by fractional order control[J]. IEEE Photonics Journal, 2018, 10(5): 7906811.

    [120] Tang T, Cai H X, Huang Y M, et al. Combined line-of-sight error and angular position to generate feedforward control for a charge-coupled device–based tracking loop[J]. Optical Engi-neering, 2015, 54(10): 105107.

    [121] Tao T, Ren G, Ma J G, et al. Compensating for some errors related to time delay in a charge-coupled-device-based fast steering mirror control system using a feedforward loop[J]. Optical Engineering, 2010, 49(7): 073005.

    [122] Tao T, Tian J, Zhong D J, et al. Combining charge couple de-vices and rate sensors for the feedforward control system of a charge coupled device tracking loop[J]. Sensors, 2016, 16(7): 968.

    [123] Tang T, Yang T, Qi B, et al. Error-based feedforward control fora charge-coupled device tracking system[J]. IEEE Transactions on Industrial Electronics, 2019, 66(10): 8172–8180.

    [124] Ren W, Mao Y, Li Z J, et al. Error-based feedforward control for optoelectronic tracking system[C]//2019 Chinese Automation Congress (CAC), 2019: 460–465.

    [125] Atsumi T, Yabui S. Quadruple-stage actuator system for mag-netic-head positioning system in hard disk drives[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 9184–9194.

    [126] Olfati-Saber R. Flocking for multi-agent dynamic systems: algo-rithms and theory[J]. IEEE Transactions on Automatic Control, 2006, 51(3): 401–420.

    [127] Li T, Zhang J F. Consensus conditions of multi-agent systems with time-varying topologies and stochastic communication noises[J]. IEEE Transactions on Automatic Control, 2010, 55(9): 2043–2057.

    [128] Tang Y, Gao H J, Zou W, et al. Distributed synchronization in networks of agent systems with nonlinearities and random switchings[J]. IEEE Transactions on Cybernetics, 2013, 43(1): 358–370.

    [129] You K Y, Xie L H. Network topology and communication data rate for consensusability of discrete-time multi-agent systems[J]. IEEE Transactions on Automatic Control, 2011, 56(10): 2262–2275.

    [130] Olfati-Saber R. Distributed Kalman filter with embedded con-sensus filters[C]//Proceedings of the 44th IEEE Conference on Decision and Control, 2006.

    [131] Hu J W, Xie L H, Zhang C S. Diffusion Kalman filtering based on covariance intersection[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 891–902.

    [133] Jasperneite J, Sauter T, Wollschlaeger M. Why we need auto-mation models: handling complexity in industry 4.0 and the in-ternet of things[J]. IEEE Industrial Electronics Magazine, 2020, 14(1): 29–40.

    [134] Monmasson E, Idkhajine L, Naouar M W. FPGA-based control-lers[J]. IEEE Industrial Electronics Magazine, 2011, 5(1): 14–26.

    [135] Jovanovic N, Martinache F, Guyon O, et al. The subaru coro-nagraphic extreme adaptive optics system: enabling high-contrast imaging on solar-system scales[J]. Publications of the Astronomical Society of the Pacific, 2015, 127(955): 890–910.

    [136] Rao C H, Gu N T, Zhu L, et al. 1.8-m solar telescope in China: Chinese large solar telescope[J]. Journal of Astronomical Tele-scopes, Instruments, and Systems, 2015, 1(2): 024001.

    CLP Journals

    [1] Xia Wenqiang, He Qiunong, Duan Qianwen, Zhou Xi, Deng Jiuqiang, Mao Yao. Equivalent acceleration feedforward based on sensor optimization and robust prediction[J]. Opto-Electronic Engineering, 2021, 48(11): 210153

    Tang Tao, Ma Jiaguang, Chen Hongbin, Fu Chengyu, Yang Hu, Ren Ge, Yang Wenshu, Qi Bo, Cao Lei, Zhang Mengwei, Bao Qiliang, Tan Yi, Huang Yongmei, Mao Yao, Wang Qiang. A review on precision control methodologies for optical-electric tracking control system[J]. Opto-Electronic Engineering, 2020, 47(10): 200315
    Download Citation