• Chinese Journal of Lasers
  • Vol. 50, Issue 3, 0307201 (2023)
Nian Peng1, Kerui Li1, Haixia Qiu2, Ying Gu1、2、**, and Defu Chen1、*
Author Affiliations
  • 1School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
  • 2Department of Laser Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
  • show less
    DOI: 10.3788/CJL221392 Cite this Article Set citation alerts
    Nian Peng, Kerui Li, Haixia Qiu, Ying Gu, Defu Chen. Recent Progress in Methods for Quantitative Measurement of Photosensitizer[J]. Chinese Journal of Lasers, 2023, 50(3): 0307201 Copy Citation Text show less
    References

    [1] Gu Y, Huang N Y, Liang J et al. Clinical study of 1949 cases of port wine stains treated with vascular photodynamic therapy (Gu’s PDT)[J]. Annales De Dermatologie et De Venereologie, 134, 241-244(2007).

    [2] Wilson B C, Patterson M S. The physics, biophysics and technology of photodynamic therapy[J]. Physics in Medicine and Biology, 53, R61-R109(2008).

    [3] Beaulieu E, Laurence A, Birlea M et al. Wide-field optical spectroscopy system integrating reflectance and spatial frequency domain imaging to measure attenuation-corrected intrinsic tissue fluorescence in radical prostatectomy specimens[J]. Biomedical Optics Express, 11, 2052-2072(2020).

    [4] Li L B, Li W M, Xiang L H et al. Photodynamic therapy: clinical research and application in China[J]. Chinese Journal of Laser Medicine & Surgery, 21, 278-307(2012).

    [5] Kim M M, Ghogare A A, Greer A et al. On the in vivo photochemical rate parameters for PDT reactive oxygen species modeling[J]. Physics in Medicine and Biology, 62, R1-R48(2017).

    [6] Li B H, Chen T L, Lin L et al. Recent progress in photodynamic therapy: from fundamental research to clinical applications[J]. Chinese Journal of Lasers, 49, 0507101(2022).

    [7] Kim M M, Darafsheh A. Light sources and dosimetry techniques for photodynamic therapy[J]. Photochemistry and Photobiology, 96, 280-294(2020).

    [8] Agostinis P, Berg K, Cengel K A et al. Photodynamic therapy of cancer: an update[J]. CA: A Cancer Journal for Clinicians, 61, 250-281(2011).

    [9] Robinson D J, Karakullukçu M B, Kruijt B et al. Optical spectroscopy to guide photodynamic therapy of head and neck tumors[J]. IEEE Journal of Selected Topics in Quantum Electronics, 16, 854-862(2010).

    [10] Sharikova A V, Finlay J C, Liang X et al. PDT dose dosimetry for pleural photodynamic therapy[J]. Proceedings of SPIE, 8568, 856817(2013).

    [11] Ong Y H, Kim M M, Finlay J C et al. PDT dose dosimetry for Photofrin-mediated pleural photodynamic therapy (pPDT)[J]. Physics in Medicine and Biology, 63, 015031(2017).

    [12] Correia J H, Rodrigues J A, Pimenta S et al. Photodynamic therapy review: principles, photosensitizers, applications, and future directions[J]. Pharmaceutics, 13, 1332(2021).

    [13] Gunaydin G, Gedik M E, Ayan S. Photodynamic therapy-current limitations and novel approaches[J]. Frontiers in Chemistry, 9, 691697(2021).

    [14] Zhao Y B, Moritz T, Hinds M F et al. High optical-throughput spectroscopic singlet oxygen and photosensitizer luminescence dosimeter for monitoring of photodynamic therapy[J]. Journal of Biophotonics, 14, e202100088(2021).

    [15] Wang X N, Luo D, Basilion J P. Photodynamic therapy: targeting cancer biomarkers for the treatment of cancers[J]. Cancers, 13, 2992(2021).

    [16] Garcia M R, Requena M B, Pratavieira S et al. Development of a system to treat and online monitor photodynamic therapy of skin cancer using PpIX near-infrared fluorescence[J]. Photodiagnosis and Photodynamic Therapy, 30, 101680(2020).

    [17] Kruijt B, van der Ploeg-van den Heuvel A, de Bruijn H S et al. Monitoring interstitial m-THPC-PDT in vivo using fluorescence and reflectance spectroscopy[J]. Lasers in Surgery and Medicine, 41, 653-664(2009).

    [18] Samkoe K S, Bates B D, Elliott J T et al. Application of fluorescence-guided surgery to subsurface cancers requiring wide local excision: literature review and novel developments toward indirect visualization[J]. Cancer Control, 25, 1073274817752332(2018).

    [19] García A A, Zhou X N, Bec J et al. First in patient assessment of brain tumor infiltrative margins using simultaneous time-resolved measurements of 5-ALA-induced PpIX fluorescence and tissue autofluorescence[J]. Journal of Biomedical Optics, 27, 020501(2022).

    [20] Kaneko S, Suero Molina E, Ewelt C et al. Fluorescence-based measurement of real-time kinetics of protoporphyrin IX after 5-aminolevulinic acid administration in human in situ malignant gliomas[J]. Neurosurgery, 85, E739-E746(2019).

    [21] Bradley R S, Thorniley M S. A review of attenuation correction techniques for tissue fluorescence[J]. Journal of the Royal Society, Interface, 3, 1-13(2006).

    [22] Valdes P A, Juvekar P, Agar N Y R et al. Quantitative wide-field imaging techniques for fluorescence guided neurosurgery[J]. Frontiers in Surgery, 6, 31(2019).

    [23] DSouza A V, Lin H Y, Henderson E R et al. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging[J]. Journal of Biomedical Optics, 21, 080901(2016).

    [24] Bonnin D A A, Havrda M C, Lee M C et al. Characterizing the heterogeneity in 5-aminolevulinic acid-induced fluorescence in glioblastoma[J]. Journal of Neurosurgery, 132, 1706-1714(2019).

    [25] Huang Z, Xu H P, Meyers A D et al. Photodynamic therapy for treatment of solid tumors: potential and technical challenges[J]. Technology in Cancer Research & Treatment, 7, 309-320(2008).

    [26] Wei L P, Roberts D W, Sanai N et al. Visualization technologies for 5-ALA-based fluorescence-guided surgeries[J]. Journal of Neuro-Oncology, 141, 495-505(2019).

    [27] Belykh E, Miller E J, Patel A A et al. Optical characterization of neurosurgical operating microscopes: quantitative fluorescence and assessment of PpIX photobleaching[J]. Scientific Reports, 8, 12543(2018).

    [28] Huang Z, Qiu H X, Shi S S et al. Fluorescence-guided resection of brain tumor: review of the significance of intraoperative quantification of protoporphyrin IX fluorescence[J]. Neurophotonics, 4, 011011(2017).

    [29] Ruiz A J, LaRochelle E P M, Gunn J R et al. Smartphone fluorescence imager for quantitative dosimetry of protoporphyrin-IX-based photodynamic therapy in skin[J]. Journal of Biomedical Optics, 25, 063802(2019).

    [30] Saager R B, Cuccia D J, Saggese S et al. A light emitting diode (LED) based spatial frequency domain imaging system for optimization of photodynamic therapy of nonmelanoma skin cancer: quantitative reflectance imaging[J]. Lasers in Surgery and Medicine, 45, 207-215(2013).

    [31] Kholin V V, Chepurna O M, Shton I O et al. Methods and fiber optics spectrometry system for control of photosensitizer in tissue during photodynamic therapy[J]. Proceedings of SPIE, 10031, 10031(2016).

    [32] Saager R B, Cuccia D J, Saggese S et al. Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain[J]. Journal of Biomedical Optics, 16, 126013(2011).

    [33] Keijzer M, Richards-Kortum R R, Jacques S L et al. Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta[J]. Applied Optics, 28, 4286-4292(1989).

    [34] Pal R, Kumar A T N. Comparison of fluorescence lifetime and multispectral imaging for quantitative multiplexing in biological tissue[J]. Biomedical Optics Express, 13, 3854-3868(2022).

    [35] Imperato S, Harms F, Hubert A et al. Single-shot quantitative aberration and scattering length measurements in mouse brain tissues using an extended-source Shack-Hartmann wavefront sensor[J]. Optics Express, 30, 15250-15265(2022).

    [36] Bravo J J, Davis S C, Roberts D W et al. Mathematical model to interpret localized reflectance spectra measured in the presence of a strong fluorescence marker[J]. Journal of Biomedical Optics, 21, 061004(2016).

    [37] Hennessy R J, Lim S L, Markey M K et al. Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy[J]. Journal of Biomedical Optics, 18, 037003(2013).

    [38] Roig B, Koenig A, Perraut F et al. Multilayered phantoms with tunable optical properties for a better understanding of light/tissue interactions[J]. Proceedings of SPIE, 9325, 93250B(2015).

    [39] Yuan W, Kut C, Liang W X et al. Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection[J]. Scientific Reports, 7, 44909(2017).

    [40] Valdés P A, Leblond F, Jacobs V L et al. Quantitative, spectrally-resolved intraoperative fluorescence imaging[J]. Scientific Reports, 2, 798(2012).

    [41] Nishio N, van Keulen S, van den Berg N S et al. Probe-based fluorescence dosimetry of an antibody-dye conjugate to identify head and neck cancer as a first step to fluorescence-guided tissue preselection for pathological assessment[J]. Head & Neck, 42, 59-66(2020).

    [42] Middelburg T A, Hoy C L, Neumann H A M et al. Correction for tissue optical properties enables quantitative skin fluorescence measurements using multi-diameter single fiber reflectance spectroscopy[J]. Journal of Dermatological Science, 79, 64-73(2015).

    [43] Grygoryev K, Lu H H, Li C L et al. Multi-spectral clinical prototype for fluorophore detection[J]. Frontiers in Physics, 9, 724962(2021).

    [44] Kramer R S, Pearlstein R D. Cerebral cortical microfluorometry at isosbestic wavelengths for correction of vascular artifact[J]. Science, 205, 693-696(1979).

    [45] Valdés P A, Leblond F, Kim A et al. A spectrally constrained dual-band normalization technique for protoporphyrin IX quantification in fluorescence-guided surgery[J]. Optics Letters, 37, 1817-1819(2012).

    [46] Kanick S C, Davis S C, Zhao Y et al. Pre-treatment protoporphyrin IX concentration in actinic keratosis lesions may be a predictive biomarker of response to aminolevulinic-acid based photodynamic therapy[J]. Photodiagnosis and Photodynamic Therapy, 12, 561-566(2015).

    [47] Zou J, Meng N, Li W J et al. Quantitative detection of protoporphyrin IX (PpIX) fluorescence in tissues[J]. Proceedings of SPIE, 11553, 115530V(2020).

    [48] Zou J, Xie S S, Meng N et al. Calibration method for tissue fluorescence spectrum of photosensitizer PpIX[J]. Journal of Fujian Normal University (Natural Science Edition), 37, 57-61(2021).

    [49] Kim A, Khurana M, Moriyama Y et al. Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements[J]. Journal of Biomedical Optics, 15, 067006(2010).

    [50] Wilson R H, Chandra M, Scheiman J et al. Mathematical modeling of reflectance and intrinsic fluorescence for cancer detection in human pancreatic tissue[J]. Proceedings of SPIE, 7187, 71870H(2009).

    [51] Schmidt I, Nagengast W B, Robinson D J. Characterizing factors influencing calibration and optical property determination in quantitative reflectance spectroscopy to improve standardization[J]. Journal of Biomedical Optics, 27, 074714(2022).

    [52] Hamdy O, Mohammed H S. Variations in tissue optical parameters with the incident power of an infrared laser[J]. PLoS One, 17, e0263164(2022).

    [53] Valdes P A, Angelo J P, Choi H S et al. qF-SSOP: real-time optical property corrected fluorescence imaging[J]. Biomedical Optics Express, 8, 3597-3605(2017).

    [54] Chang S K, Arifler D, Drezek R A et al. Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements[J]. Journal of Biomedical Optics, 9, 511-522(2004).

    [55] Lin W C, Mahadevan-Jansen A, Johnson M D et al. In vivo optical spectroscopy detects radiation damage in brain tissue[J]. Neurosurgery, 57, 518-525(2005).

    [56] Braun F, Schalk R, Heintz A et al. NADH-fluorescence scattering correction for absolute concentration determination in a liquid tissue phantom using a novel multispectral magnetic-resonance-imaging-compatible needle probe[J]. Measurement Science and Technology, 28, 075903(2017).

    [57] Mousavi M, Moriyama L T T, Grecco C et al. Photodynamic therapy dosimetry using multiexcitation multiemission wavelength: toward real-time prediction of treatment outcome[J]. Journal of Biomedical Optics, 25, 063812(2020).

    [58] Shukla S, Singh P, Pandey P K et al. Extraction of thickness and fluorophore concentration of the upper layer in a two-layered solid phantom using spatially resolved fluorescence spectroscopy[J]. Proceedings of SPIE, 11363, 113631L(2020).

    [59] Valdés P A, Roberts D W, Lu F K et al. Optical technologies for intraoperative neurosurgical guidance[J]. Neurosurgical Focus, 40, E8(2016).

    [60] Li W B, Shen Y, Li B H. Advances in optical imaging for monitoring photodynamic therapy dosimetry[J]. Chinese Journal of Lasers, 47, 0207006(2020).

    [61] Cuccia D J, Bevilacqua F, Durkin A J et al. Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain[J]. Optics Letters, 30, 1354-1356(2005).

    [62] Xie Y J, Thom M, Ebner M et al. Wide-field spectrally resolved quantitative fluorescence imaging system: toward neurosurgical guidance in glioma resection[J]. Journal of Biomedical Optics, 22, 116006(2017).

    [63] Bodenschatz N, Krauter P, Liemert A et al. Model-based analysis on the influence of spatial frequency selection in spatial frequency domain imaging[J]. Applied Optics, 54, 6725-6731(2015).

    [64] Cuccia D J, Bevilacqua F P, Durkin A J et al. Quantitation and mapping of tissue optical properties using modulated imaging[J]. Journal of Biomedical Optics, 14, 024012(2009).

    [65] Sweer J A, Chen M T, Salimian K J et al. Wide-field optical property mapping and structured light imaging of the esophagus with spatial frequency domain imaging[J]. Journal of Biophotonics, 12, e201900005(2019).

    [66] Angelo J P, Chen S J K, Ochoa M et al. Review of structured light in diffuse optical imaging[J]. Journal of Biomedical Optics, 24, 071602(2018).

    [67] Sibai M, Fisher C, Veilleux I et al. Preclinical evaluation of spatial frequency domain-enabled wide-field quantitative imaging for enhanced glioma resection[J]. Journal of Biomedical Optics, 22, 076007(2017).

    [68] Wirth D J, Sibai M, Olson J D et al. Feasibility of using spatial frequency-domain imaging intraoperatively during tumor resection[J]. Journal of Biomedical Optics, 24, 071608(2018).

    [69] Valdes P A, Angelo J, Gioux S. Real-time quantitative fluorescence imaging using a single snapshot optical properties technique for neurosurgical guidance[J]. Proceedings of SPIE, 9305, 93050J(2015).

    [70] Bravo J J, Olson J D, Davis S C et al. Hyperspectral data processing improves PpIX contrast during fluorescence guided surgery of human brain tumors[J]. Scientific Reports, 7, 9455(2017).

    [71] Jermyn M, Gosselin Y, Valdes P A et al. Improved sensitivity to fluorescence for cancer detection in wide-field image-guided neurosurgery[J]. Biomedical Optics Express, 6, 5063-5074(2015).

    [72] Hoogstins C, Burggraaf J J, Koller M et al. Setting standards for reporting and quantification in fluorescence-guided surgery[J]. Molecular Imaging and Biology, 21, 11-18(2019).

    [73] Kepshire D S, Gibbs-Strauss S L, O’Hara J A et al. Imaging of glioma tumor with endogenous fluorescence tomography[J]. Journal of Biomedical Optics, 14, 030501(2009).

    [74] Gruber J D, Paliwal A, Krishnaswamy V et al. System development for high frequency ultrasound-guided fluorescence quantification of skin layers[J]. Journal of Biomedical Optics, 15, 026028(2010).

    [75] Mehrabi M, Nouizi F, Algarawi M et al. CCD-based temperature modulated fluorescence tomography[J]. Proceedings of SPIE, 10874, 108740Y(2019).

    [76] Sibai M, Wirth D J, Leblond F et al. Quantitative subsurface spatial frequency-domain fluorescence imaging for enhanced glioma resection[J]. Journal of Biophotonics, 12, e201800271(2019).

    [77] Wirth D J, Sibai M, Wilson B C et al. First experience with spatial frequency domain imaging and red-light excitation of protoporphyrin IX fluorescence during tumor resection[J]. Biomedical Optics Express, 11, 4306-4315(2020).

    [78] Heeman W, Vonk J, Ntziachristos V et al. A guideline for clinicians performing clinical studies with fluorescence imaging[J]. Journal of Nuclear Medicine, 63, 640-645(2022).

    [79] Ma L, Fei B W. Comprehensive review of surgical microscopes: technology development and medical applications[J]. Journal of Biomedical Optics, 26, 010901(2021).

    [80] Belykh E, Miller E J, Hu D et al. Scanning fiber endoscope improves detection of 5-aminolevulinic acid-induced protoporphyrin IX fluorescence at the boundary of infiltrative glioma[J]. World Neurosurgery, 113, e51-e69(2018).

    [81] Belykh E, Jubran J H, George L L et al. Molecular imaging of glucose metabolism for intraoperative fluorescence guidance during glioma surgery[J]. Molecular Imaging and Biology, 23, 586-596(2021).

    [82] Reinert M, Piffaretti D, Wilzbach M et al. Quantitative modulation of PpIX fluorescence and improved glioma visualization[J]. Frontiers in Surgery, 6, 41(2019).

    [83] Uthoff R D, Song B F, Sunny S et al. Point-of-care, smartphone-based, dual-modality, dual-view, oral cancer screening device with neural network classification for low-resource communities[J]. PLoS One, 13, e0207493(2018).

    [84] Hunt B, Streeter S S, Ruiz A J et al. Ultracompact fluorescence smartphone attachment using built-in optics for protoporphyrin-IX quantification in skin[J]. Biomedical Optics Express, 12, 6995-7008(2021).

    [85] Sujatha N, Murukeshan V M, Ong L S et al. An all fiber optic system modeling for the gastrointestinal endoscopy: design concepts and fluorescent analysis[J]. Optics Communications, 219, 71-79(2003).

    [86] Thapa P, Singh V, Bhatt S et al. Development of multimodal micro-endoscopic system with oblique illumination for simultaneous fluorescence imaging and spectroscopy of oral cancer[J]. Journal of Biophotonics, 15, e202100284(2022).

    Nian Peng, Kerui Li, Haixia Qiu, Ying Gu, Defu Chen. Recent Progress in Methods for Quantitative Measurement of Photosensitizer[J]. Chinese Journal of Lasers, 2023, 50(3): 0307201
    Download Citation