• Acta Optica Sinica
  • Vol. 37, Issue 8, 0811002 (2017)
Zi Liang1、2, Xiaoying An1、2, Ru Zhang1、2, Lipei Song1、2、*, Songhe Zhu1、2, and Pengfei Wu1、2
Author Affiliations
  • 1 Institute of Modern Optics, Nankai University, Tianjin, 300071 China
  • 2 Key Laboratory of Optical Information Science and Technology of Ministry of Education, Nankai Univeristy, Tianjin, 300071 China
  • show less
    DOI: 10.3788/AOS201737.0811002 Cite this Article Set citation alerts
    Zi Liang, Xiaoying An, Ru Zhang, Lipei Song, Songhe Zhu, Pengfei Wu. Imaging Through Turbid Media Based on Speckled Illumination and Holography[J]. Acta Optica Sinica, 2017, 37(8): 0811002 Copy Citation Text show less
    References

    [1] Gatti A, Brambilla E, Bache M et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Phys Rev Lett, 93, 093602(2004). http://www.europepmc.org/abstract/MED/15447100

    [2] Meyers R E, Deacon K S, Shih Y. Turbulence-free ghost imaging[J]. Appl Phys Lett, 98, 111115(2011).

    [3] Chen X H, Liu Q, Luo K H et al. Lensless ghost imaging with true thermal light[J]. Opt Lett, 34, 695-697(2009). http://www.opticsinfobase.org/abstract.cfm?URI=ol-34-5-695

    [4] Xu Y K, Liu W T, Zhang E F et al. Is ghost imaging intrinsically more powerful against scattering?[J]. Opt Express, 23, 32993-33000(2015). http://europepmc.org/abstract/MED/26831967

    [5] Zhang Minghui, Wei Qing, Shen Xia et al. Statistical optics based numerical modeling of ghost imaging and its experimental approva[J]. Acta Optica Sinica, 27, 1858-1866(2007).

    [6] Kolenderska S M, Katz O, Fink M et al. Scanning-free imaging through a single fiber by random spatio-spectral encoding[J]. Opt Lett, 40, 534-537(2014). http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-40-4-534

    [7] Gehm M E, John R, Brady D J et al. Single-shot compressive spectral imaging with a dual-disperser architecture[J]. Opt Express, 15, 14013-14027(2007). http://www.ncbi.nlm.nih.gov/pubmed/19550674

    [8] Hsieh C L, Pu Y, Grange R et al. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle[J]. Opt Express, 18, 20723-20731(2010). http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-20-20723

    [9] Mosk A P, Lagendijk A, Lerosey G et al. Controlling waves in space and time for imaging and focusing in complex media[J]. Nat Photonics, 6, 283-292(2012). http://www.nature.com/nphoton/journal/v6/n5/abs/nphoton.2012.88.html

    [10] Nixon M, Katz O, Small E et al. Real-time wavefront-shaping through scattering media by all optical feedback[J]. Nat Photonics, 7, 919-924(2013). http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2013.248.html

    [11] Katz O, Small E, Silberberg Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light[J]. Nat Photonics, 6, 549-553(2012). http://www.nature.com/nphoton/journal/v6/n8/nphoton.2012.150/metrics

    [12] Harm W, Roider C, Jesacher A et al. Lensless imaging through thin diffusive media[J]. Opt Express, 22, 22146-22156(2014). http://www.opticsinfobase.org/abstract.cfm?URI=oe-22-18-22146

    [13] Singh A K, Naik D N, Pedrini G et al. Looking through a diffuser and around an opaque surface: a holographic approach[J]. Opt Express, 22, 7694-7701(2014). http://europepmc.org/abstract/med/24718145

    [14] Purcell M J, Kumar M, Rand S C et al. Holographic imaging through a scattering medium by diffuser-aided statistical averaging[J]. J Opt Soc Am A, 33, 1291-1297(2016). http://www.ncbi.nlm.nih.gov/pubmed/27409685

    [15] Zhang Y, Situ G, Pedrini G et al. Application of short-coherence lensless Fourier-transform digital holography in imaging through diffusive medium[J]. Opt Commun, 286, 56-59(2013). http://www.sciencedirect.com/science/article/pii/S0030401812007262

    [16] Xu W, Jericho M H, Meinertzhagen I A et al. Digital in-line holography of microspheres[J]. Appl Opt, 41, 5367-5375(2002). http://www.opticsinfobase.org/abstract.cfm?URI=ao-41-25-5367

    [17] Verrier N, Coëtmellec S, Brunel M et al. Digital in-line holography in thick optical systems: application to visualization in pipes[J]. Appl Opt, 47, 4147-4157(2008). http://www.opticsinfobase.org/abstract.cfm?URI=ao-47-22-4147

    [18] Graulig C, Kanka M, Riesenberg R. Phase shifting technique for extended inline holographic microscopy with a pinhole array[J]. Opt Express, 20, 22383-22390(2012). http://www.ncbi.nlm.nih.gov/pubmed/23037386

    [19] Tyo J S. Enhancement of the point-spread function for imaging in scattering media by use of polarization-difference imaging[J]. J Opt Soc Am A, 17, 1-10(2000). http://www.opticsinfobase.org/abstract.cfm?uri=josaa-17-1-1

    [20] Tyo J S, Rowe M P, Jr P E et al. Target detection in optically scattering media by polarization-difference imaging[J]. Appl Opt, 35, 1855-1870(1996). http://www.ncbi.nlm.nih.gov/pubmed/21085310

    [21] Morgan S P, Khong M P, Somekh M G. Effects of polarization state and scatterer concentration on optical imaging through scattering media[J]. Appl Opt, 36, 1560-1565(1997). http://www.opticsinfobase.org/abstract.cfm?uri=ao-36-7-1560

    [22] Bertolotti J. Putten E G V, Blum C, et al. Non-invasive imaging through opaque scattering layers[J]. Nature, 491, 232-234(2012).

    [23] Katz O, Heidmann P, Fink M et al. Non-invasive single-shot imaging through scattering layers and around corners via, speckle correlations[J]. Nat Photonics, 8, 784-790(2014). http://www.nature.com/nphoton/journal/v8/n10/nphoton.2014.189/metrics

    [24] Edrei E, Scarcelli G. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect[J]. Optica, 3, 71-74(2016). http://europepmc.org/abstract/MED/27347498

    [25] Fienup J R. Phase retrieval algorithms: a comparison[J]. Appl Opt, 21, 2758-2769(1982). http://www.ncbi.nlm.nih.gov/pubmed/20396114

    [26] Ji Jin, Huang Fei, Wang Liang et al. Information encryption based on digital holography and phase retrieve algorithm[J]. Chinese J Lasers., 34, 1408-1412(2007).

    [27] Apostol A, Dogariu A. Spatial correlations in the near field of random media[J]. Phys Rev Lett, 91, 9105-9117(2003). http://www.ncbi.nlm.nih.gov/pubmed/14525182

    [28] Carminati R. Subwavelength spatial correlations in near-field speckle patterns[J]. Phys Rev A, 81, 1532-1532(2010). http://adsabs.harvard.edu/abs/2010PhRvA..81e3804C

    [29] Dror I, Sandrov A, Kopeika N S. Experimental investigation of the influence of the relative position of the scattering layer on image quality: the shower curtain effect[J]. Appl Opt, 37, 6495-6499(1998). http://www.opticsinfobase.org/ao/abstract.cfm?id=43553

    [30] Goodman J W. Statisticalproperties of laser speckle patterns[M]. Heidelberg: Springer(1975).

    [31] Kirkpatrick S J, Duncan D D. Wells-Gray E M. Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging[J]. Opt Lett, 33, 2886-2888(2009). http://europepmc.org/abstract/med/19079481

    Zi Liang, Xiaoying An, Ru Zhang, Lipei Song, Songhe Zhu, Pengfei Wu. Imaging Through Turbid Media Based on Speckled Illumination and Holography[J]. Acta Optica Sinica, 2017, 37(8): 0811002
    Download Citation