• Journal of Innovative Optical Health Sciences
  • Vol. 11, Issue 6, 1850038 (2018)
Ryosuke Kasahara1、2、*, Saiko Kino3, Shunsuke Soyama2, and Yuji Matsuura2、3
Author Affiliations
  • 1Ricoh Institute of Information and Communication Technology, Research and Development Division, Ricoh Company, 2-7-1 Izumi, Ebina 243-0460, Japan
  • 2Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Sendai 980-8579, Japan
  • 3Graduate School of Biomedical Engineering, Tohoku University, 6-6-05 Aoba, Sendai 980-8579, Japan
  • show less
    DOI: 10.1142/s1793545818500384 Cite this Article
    Ryosuke Kasahara, Saiko Kino, Shunsuke Soyama, Yuji Matsuura. Unsupervised calibration for noninvasive glucose-monitoring devices using mid-infrared spectroscopy[J]. Journal of Innovative Optical Health Sciences, 2018, 11(6): 1850038 Copy Citation Text show less
    References

    [1] J. Yadav, A. Rani, V. Singh, B. M. Murari, “Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy,” Biomed. Signal. Process. Control 18, 214–227 (2015).

    [2] K. Yamakoshi, Y. Yamakoshi, “Pulse glucometry: A new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry,” J. Biomed. Opt. 11, 054028 (2006).

    [3] J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, J. Wagner, “Tunable laser diode system for noninvasive blood glucose measurements,” Appl. Spectrosc. 59, 1480–1484 (2005).

    [4] S. Liakat, K. A. Bors, L. Xu, C. M. Woods, J. Doyle, C. F. Gmachl, “Noninvasive in vivo glucose sensing on human subjects using mid-infrared light,” Biomed. Opt. Express. 5, 2397–2404 (2014).

    [5] A. M. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, M. S. Feld, “Raman spectroscopy for noninvasive glucose measurements,” J. Biomed. Opt. 10, 031114 (2005). Crossref, ISI, Google Scholar

    [6] H. von Lilienfeld-Toal, M. Weidenmüller, A. Xhelaj, W. Mantele, “A novel approach to non-invasive glucose measurement by mid-infrared spectroscopy: The combination of quantum cascade lasers (QCL) and photoacoustic detection,” Vib. Spectrosc. 38, 209–215 (2005).

    [7] M. A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, H. von Lilienfeld-Toal, W. Mantele, “In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy,” Anal. Chem. 85, 1013–1020 (2013).

    [8] S. K. Vashist, “Non-invasive glucose monitoring technology in diabetes management: A review,” Anal. Chim. Acta 750, 16–27 (2012).

    [9] K. Maruo, T. Oota, M. Tsurugi, T. Nakagawa, H. Arimoto, M. Tamura, Y. Ozaki, Y. Yamada, “New methodology to obtain a calibration model for noninvasive near-infrared blood glucose monitoring,” Appl. Spectrosc. 60, 441–449 (2006).

    [10] A. Caduff, M. Zanon, M. Mueller, P. Zakharov, Y. Feldman, O. De Feo, M. Donath, W. A. Stahel, M. S. Talary, “The effect of a global, subject, and device-specific model on a noninvasive glucose monitoring multisensor system,” J. Diabetes Sci.Technol. 9, 865–872 (2015).

    [11] I. Harman-Boehm, A. Gal, A. M. Raykhman, J. D. Zahn, E. Naidis, Y. Mayzel, “Noninvasive glucose monitoring: A novel approach,” J. Diabetes Sci. Technol. 3, 253–260 (2009).

    [12] P. P. Pai, P. K. Sanki, S. Sarangi, S. Banerjee, “Modelling, verification, and calibration of a photoacoustics based continuous non-invasive blood glucose monitoring system,” Rev. Sci. Instrum. 86, 064901 (2015).

    [13] Y. Wang, Y. Fan, P. Bhatt, C. Davatzikos, “High-dimensional pattern regression using machine learning: From medical images to continuous clinical variables,” NeuroImage 50, 1519–1535 (2010).

    [14] R. C. Deo, “Machine learning in medicine,” Circulation 132, 1920–1930 (2015).

    [15] K. R. Foster, R. Koprowski, J. D. Skufca, “Machine learning, medical diagnosis, and biomedical engineering research — commentary,” Biomed. Eng. Online 13, 94 (2014).

    [16] L. Duan, D. Xu, I. W. H. Tsang, “Domain adaptation from multiple sources: A domain-dependent regularization approach,” IEEE Trans. Neural Netw. Learn. Syst. 23, 504–518 (2012).

    [17] H. M. Heise, R. Marbach, “Human oral mucosa studies with varying blood glucose concentration by non-invasive ATR-FT-IR-spectroscopy,” Cell. Mol. Biol. 44, 899–912 (1998). Google Scholar

    [18] Y. Abe, Y. Matsuura, Y. W. Shi, Y. Wang, H. Uyama, M. Miyagi, “Polymer-coated hollow fiber for CO(2) laser delivery,” Opt. Lett. 23, 89–90 (1998).

    [19] Y. Matsuura, S. Kino, T. Katagiri, “Hollow-fiber-based flexible probe for remote measurement of infrared attenuated total reflection,” Appl. Opt. 48, 5396–5400 (2009).

    [20] S. Kino, Y. Tanaka, Y. Matsuura, “Blood glucose measurement by using hollow optical fiber-based attenuated total reflection probe,” J. Biomed. Opt. 19, 057010 (2014).

    [21] S. Kino, S. Omori, T. Katagiri, Y. Matsuura, “Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism,” Biomed. Opt. Express 7, 701–708 (2016).

    [22] R. Kasahara, S. Kino, S. Soyama, Y. Matsuura, “Noninvasive robust glucose monitoring using mid-infrared absorption spectroscopy based on a few wavenumbers,” Biomed. Opt. Express 9, 289–302 (2018).

    [23] M. R. Robinson, R. P. Eaton, D. M. Haaland, G. W. Koepp, E. V. Thomas, B. R. Stallard, P. L. Robinson, “Noninvasive glucose monitoring in diabetic patients: A preliminary evaluation,” Clin. Chem. 38, 1618–1622 (1992). ISI, Google Scholar

    [24] I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Anal. Chem. 82, 9719–9726 (2010).

    [25] S. Ramasahayam, S. H. Koppuravuri, L. Arora, S. R. Chowdhury, “Noninvasive blood glucose sensing using near infrared spectroscopy and artificial neural networks based on inverse delayed function model of neuron,” J. Med. Syst. 39, 166 (2015).

    [26] C. Fischbacher, K.-U. Jagemann, K. Danzer, U. A. Müller, L. Papenkordt, J. Schüler, “Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination,” Fresenius J. Anal. Chem. 359, 78–82 (1997).

    [27] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, V. Lempitsky, U. Dogan, M. Kloft, F. Orabona, T. Tommasi, “Domain-adversarial training of neural networks,” J. Mach. Learn. Res. 17, 1–35 (2016). Google Scholar

    [28] M. S. Boyne, D. M. Silver, J. Kaplan, C. D. Saudek, “Timing of changes in interstitial and venous blood glucose measured with a continuous subcutaneous glucose sensor,” Diabetes 52, 2790–2794 (2003).

    [29] K. He, X. Zhang, S. Ren, J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on imagenet classification,” IEEE Int. Conf. Computer Vision (IEEE, New York, 2015), pp. 1026–1034. Google Scholar

    [30] A. L. Maas, A. Y. Hannun, A. Y. Ng, “Rectifier nonlinearities improve neural network acoustic models,” in Proceedings of the 30th International Conference on Machine Learning (Atlanta, Georgia, USA, 2013), pp. 1–6. Google Scholar

    [31] S. Ioffe, C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in Proceedings of the 32nd International Conference on Machine Learning, Vol. 37 (Lille, France, 2015), pp. 448–456. Google Scholar

    [32] D. P. Kingma, J. L. Ba, “Adam: A method for stochastic optimization,” arXiv:1412.6980. Google Scholar

    [33] W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose,” Diabetes Care 10, 622–628 (1987).

    [34] O. Hertzberg, A. Bauer, A. Küderle, M. A. Pleitez, W. Mantele, “Depth-selective photothermal IR spectroscopy of skin: Potential application for non-invasive glucose measurement,” Analyst 142, 495–502 (2017).

    [35] J. Y. Sim, C. G. Ahn, E. J. Jeong, B. K. Kim, “In vivo microscopic photoacoustic spectroscopy for non-invasive glucose monitoring invulnerable to skin secretion products,” Sci. Rep. 8, 1–11 (2018).

    Ryosuke Kasahara, Saiko Kino, Shunsuke Soyama, Yuji Matsuura. Unsupervised calibration for noninvasive glucose-monitoring devices using mid-infrared spectroscopy[J]. Journal of Innovative Optical Health Sciences, 2018, 11(6): 1850038
    Download Citation