• Laser & Optoelectronics Progress
  • Vol. 61, Issue 19, 1913020 (2024)
Yifei Wang1, Lifeng Chen2, Zhongjin Lin1,*, and Xinlun Cai1,**
Author Affiliations
  • 1State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology (School of Microelectronics), Sun Yat-Sen University, Guangzhou 510006, Guangdong , China
  • 2Liobate Technology Co., Ltd., Nanjing 210036, Jiangsu , China
  • show less
    DOI: 10.3788/LOP241640 Cite this Article Set citation alerts
    Yifei Wang, Lifeng Chen, Zhongjin Lin, Xinlun Cai. Optical Coherence Tomography System Based on Photonic Integrated Technology (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(19): 1913020 Copy Citation Text show less
    References

    [1] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [2] Kashani A H, Chen C L, Gahm J K et al. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications[J]. Progress in retinal and eye research, 60, 66-100(1).

    [3] Drexler W A F[M]. Optical coherence tomography: technology and applications(2008).

    [4] Swanson E A, Fujimoto J G. The ecosystem that powered the translation of OCT from fundamental research to clinical and commercial impact[J]. Biomedical Optics Express, 8, 1638-1664(2017).

    [5] Sattler E, Kästle R, Welzel J. Optical coherence tomography in dermatology[J]. Journal of Biomedical Optics, 18, 061224(2013).

    [6] Su M N, Chen C Y, Yeh H I et al. Concise review of optical coherence tomography in clinical practice[J]. Acta Cardiologica Sinica, 32, 381-386(2016).

    [7] Tearney G J, Brezinski M E, Southern J F et al. Optical biopsy in human gastrointestinal tissue using optical coherence tomography[J]. The American Journal of Gastroenterology, 92, 1800-1804(1997).

    [8] Shubhakaran K. The application of optical coherence tomography in neurologic diseases[J]. Neurology: Clinical Practice, 6, 9-10(2016).

    [9] Hsieh Y S, Ho Y C, Lee S Y et al. Dental optical coherence tomography[J]. Sensors, 13, 8928-8949(2013).

    [10] Clements J C, Zvyagin A V, Silva K K M B D et al. Optical coherence tomography as a novel tool for non-destructive measurement of the hull thickness of lupin seeds[J]. Plant Breeding, 123, 266-270(2004).

    [11] Lee C, Lee S Y, Kim J Y et al. Optical sensing method for screening disease in melon seeds by using optical coherence tomography[J]. Sensors, 11, 9467-9477(2011).

    [12] Verboven P, Nemeth A, Abera M K et al. Optical coherence tomography visualizes microstructure of apple peel[J]. Postharvest Biology and Technology, 78, 123-132(2013).

    [13] Hasegawa S, Fujimoto M, Atsumi T et al. In-process monitoring in laser grooving with line-shaped femtosecond pulses using optical coherence tomography[J]. Light: Advanced Manufacturing, 3, 427-436(2022).

    [14] Serrels K A, Renner M K, Reid D T. Optical coherence tomography for non-destructive investigation of silicon integrated-circuits[J]. Microelectronic Engineering, 87, 1785-1791(2010).

    [15] Wiesner M, Ihlemann J, Müller H H et al. Optical coherence tomography for process control of laser micromachining[J]. Review of Scientific Instruments, 81, 033705(2010).

    [16] Liu M Y, Buma T. Biometric mapping of fingertip eccrine glands with optical coherence tomography[J]. IEEE Photonics Technology Letters, 22, 1677-1679(2010).

    [17] Bossen A, Lehmann R, Meier C. Internal fingerprint identification with optical coherence tomography[J]. IEEE Photonics Technology Letters, 22, 507-509(2010).

    [18] McNamara P M, Dsouza R, O’Riordan C et al. Development of a first-generation miniature multiple reference optical coherence tomography imaging device[J]. Journal of Biomedical Optics, 21, 126020(2016).

    [19] Song G, Chu K K, Kim S et al. First clinical application of low-cost OCT[J]. Translational Vision Science & Technology, 8, 61(2019).

    [20] Drexler W, Liu M Y, Kumar A et al. Optical coherence tomography today: speed, contrast, and multimodality[J]. Journal of Biomedical Optics, 19, 071412(2014).

    [21] Gu M, Sheppard C J R, Gan X. Image formation in a fiber-optical confocal scanning microscope[J]. Journal of the Optical Society of America A, 8, 1755-1761(1991).

    [22] Rank E A, Sentosa R, Harper D J et al. Toward optical coherence tomography on a chip: in vivo three-dimensional human retinal imaging using photonic integrated circuit-based arrayed waveguide gratings[J]. Light: Science & Applications, 10, 6(2021).

    [23] Ji X C, Yao X W, Gan Y et al. On-chip tunable photonic delay line[J]. APL Photonics, 4, 090803(2019).

    [24] Akca B I, Nguyen V D, Kalkman J et al. Toward spectral-domain optical coherence tomography on a chip[J]. IEEE Journal of Selected Topics in Quantum Electronics, 18, 1223-1233(2012).

    [25] Ruis R M, Leinse A, Dekker R et al. Decreasing the size of a spectral domain optical coherence tomography system with cascaded arrayed waveguide gratings in a photonic integrated circuit[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 6100109(2019).

    [26] Rank E A, Nevlacsil S, Muellner P et al. In vivo human retinal swept source optical coherence tomography and angiography at 830 nm with a CMOS compatible photonic integrated circuit[J]. Scientific Reports, 11, 21052(2021).

    [27] Nevlacsil S, Muellner P, Maese-Novo A et al. Multi-channel swept source optical coherence tomography concept based on photonic integrated circuits[J]. Optics Express, 28, 32468-32482(2020).

    [28] Culemann D, Knuettel A, Voges E. Integrated optical sensor in glass for optical coherence tomography (OCT)[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 730-734(2000).

    [29] Sancho-Durá J, Zinoviev K, Lloret-Soler J et al. Handheld multi-modal imaging for point-of-care skin diagnosis based on akinetic integrated optics optical coherence tomography[J]. Journal of Biophotonics, 11, e201800193(2018).

    [30] Nguyen V D, Akca B I, Wörhoff K et al. Spectral domain optical coherence tomography imaging with an integrated optics spectrometer[J]. Optics Letters, 36, 1293-1295(2011).

    [31] Akca B I, Považay B, Alex A et al. Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip[J]. Optics Express, 21, 16648-16656(2013).

    [32] Yurtsever G, Považay B, Alex A et al. Photonic integrated Mach-Zehnder interferometer with an on-chip reference arm for optical coherence tomography[J]. Biomedical Optics Express, 5, 1050-1061(2014).

    [33] Nguyen V D, Weiss N, Beeker W et al. Integrated-optics-based swept-source optical coherence tomography[J]. Optics Letters, 37, 4820-4822(2012).

    [34] Yurtsever G, Weiss N, Kalkman J et al. Ultra-compact silicon photonic integrated interferometer for swept-source optical coherence tomography[J]. Optics Letters, 39, 5228-5231(2014).

    [35] Schneider S, Lauermann M, Dietrich P I et al. Optical coherence tomography system mass-producible on a silicon photonic chip[J]. Optics Express, 24, 1573-1586(2016).

    [36] Chang L T, Weiss N, van Leeuwen T G et al. Chip based common-path optical coherence tomography system with an on-chip microlens and multi-reference suppression algorithm[J]. Optics Express, 24, 12635-12650(2016).

    [37] Huang Y Y, Badar M, Nitkowski A et al. Wide-field high-speed space-division multiplexing optical coherence tomography using an integrated photonic device[J]. Biomedical Optics Express, 8, 3856-3867(2017).

    [38] Yurtsever G, Dumon P, Bogaerts W et al. Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography[J]. Proceedings of SPIE, 7554, 75541B(2010).

    [39] van Leeuwen T G, Akca I B, Angelou N et al. On-chip Mach-Zehnder interferometer for OCT systems[J]. Advanced Optical Technologies, 7, 103-106(2018).

    [40] Wang Z, Lee H C, Vermeulen D et al. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection[J]. Biomedical Optics Express, 6, 2562-2574(2015).

    [41] Wang S X, Lin Z J, Wang Q et al. High-performance integrated laser based on thin-film lithium niobate photonics for coherent ranging[J/OL]. Laser & Photonics Reviews, 1-7. https://onlinelibrary.wiley.com/doi/epdf/10.1002/lpor.202400224

    [42] Ke W, Lin Y M, He M B et al. Digitally tunable optical delay line based on thin-film lithium niobate featuring high switching speed and low optical loss[J]. Photonics Research, 10, 2575-2583(2022).

    [43] Luo H Z, Chen Z Y, Li H et al. High-performance polarization splitter-rotator based on lithium niobate-on-insulator platform[J]. IEEE Photonics Technology Letters, 33, 1423-1426(2021).

    [44] Lin Z J, Lin Y M, Li H et al. High-performance polarization management devices based on thin-film lithium niobate[J]. Light: Science & Applications, 11, 93(2022).

    [45] Yun S H, Boudoux C, Tearney G J et al. High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter[J]. Optics Letters, 28, 1981-1983(2003).

    [46] Xu Y H, Qiu C, Chen Y Y et al. Research progress of high-speed and wide-tuned frequency swept lasers for optical coherence tomography applications[J]. Laser & Optoelectronics Progress, 60, 1600003(2023).

    [47] Lin Z J, Wang R H, Chrostowski L et al. Photonic integrated interrogators for wearable fiber-optic sensing[J]. Optics and Lasers in Engineering, 181, 108396(2024).

    [48] Kaur P, Boes A, Ren G H et al. Hybrid and heterogeneous photonic integration[J]. APL Photonics, 6, 061102(2021).

    [49] Wei W Q, He A, Yang B et al. Monolithic integration of embedded III-V lasers on SOI[J]. Light: Science & Applications, 12, 84(2023).

    [50] Liu C X, Guo Y Y, Xu R Y et al. Highly-linear and wavelength-tunable frequency-modulated continuous-wave hybrid-integrated laser[J]. Laser & Photonics Reviews, 18, 2300882(2024).

    [51] Ji X C, Mojahed D, Okawachi Y et al. Millimeter-scale chip-based supercontinuum generation for optical coherence tomography[J]. Science Advances, 7, eabg8869(2021).

    [52] Xu M Y, Zhu Y T, Pittalà F et al. Dual-polarization thin-film lithium niobate in-phase quadrature modulators for terabit-per-second transmission[J]. Optica, 9, 61-62(2022).

    [53] Liang W, Lin Z J, Wang Y F et al. Ultra-fast, fine-resolution thin-film lithium niobate spectrometer[J/OL]. Laser & Photonics Reviews, 1-7. https://onlinelibrary.wiley.com/doi/epdf/10.1002/lpor.202400635

    [54] Zhang X, Liu X Y, Liu L et al. Heterogeneous integration of III-V semiconductor lasers on thin-film lithium niobite platform by wafer bonding[J]. Applied Physics Letters, 122, 081103(2023).

    [55] Zhang X, Liu X Y, Ma R et al. Heterogeneously integrated III-V-on-lithium niobate broadband light sources and photodetectors[J]. Optics Letters, 47, 4564-4567(2022).

    [56] Miao Q R, Wang H X, Yu Y et al. Application of optical coherence tomography in fingertip biometrics[J]. Laser & Optoelectronics Progress, 60, 0811012(2023).

    Yifei Wang, Lifeng Chen, Zhongjin Lin, Xinlun Cai. Optical Coherence Tomography System Based on Photonic Integrated Technology (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(19): 1913020
    Download Citation