• Chinese Optics Letters
  • Vol. 21, Issue 9, 090001 (2023)
Yin Li1, Qiaosong Cai2, Jie Yang2, Tong Zhou3..., Yuanxi Peng1 and Tian Jiang4,*|Show fewer author(s)
Author Affiliations
  • 1Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China
  • 2National Innovation Institute of Defense Technology, Academy of Military Sciences PLA China, Beijing 100071, China
  • 3Beijing Institute for Advanced Study, National University of Defense Technology, Beijing 100000, China
  • 4Institute for Quantum Science and Technology, College of Science, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/COL202321.090001 Cite this Article Set citation alerts
    Yin Li, Qiaosong Cai, Jie Yang, Tong Zhou, Yuanxi Peng, Tian Jiang, "Adaptive microwave photonic angle-of-arrival estimation based on BiGRU-CNN [Invited]," Chin. Opt. Lett. 21, 090001 (2023) Copy Citation Text show less
    References

    [1] P. Kulakowski, J. Vales-Alonso. Angle-of-arrival localization based on antenna arrays for wireless sensor networks. Comput. Electr. Eng., 36, 1181(2010).

    [2] S. Pan, J. Yao. Photonics-based broadband microwave measurement. J. Light. Technol., 35, 3498(2017).

    [3] J. Cai, X. Chang, W. Liu, T. Shang, C. Li. Photonic direction-of-arrival estimation based on compressive sensing. Appl. Opt., 60, 3482(2021).

    [4] H. Chen, E. H. W. Chan. Simple approach to measure angle of arrival of a microwave signal. IEEE Photon. Technol. Lett., 31, 1795(2019).

    [5] L. Tang, Z. Tang, S. Li, S. Liu, S. Pan. Simultaneous measurement of microwave doppler frequency shift and angle of arrival based on a silicon integrated chip. IEEE Trans. Microw. Theory Tech., 70, 4243(2022).

    [6] P. Li, L. Yan, J. Ye, X. Feng, X. Zou, B. Luo, W. Pan, T. Zhou, Z. Chen. Angle-of-arrival estimation of microwave signals based on optical phase scanning. J. Light. Technol., 37, 6048(2019).

    [7] H. Zhuo, A. Wen, Y. Wang. Photonic angle-of-arrival measurement without direction ambiguity based on a dual–parallel Mach–Zehnder modulator. Opt. Commun., 451, 286(2019).

    [8] G. Li, D. Shi, L. Wang, M. Li, N. H. Zhu, W. Li. Photonic system for simultaneous and unambiguous measurement of angle-of-arrival and Doppler-frequency-shift. J. Light. Technol., 40, 2321(2022).

    [9] S. Li, H. Cao, X. Zheng. Concurrent photonic measurement of angle-of-arrival and chirp rate of microwave LFM signal. Chin. Opt. Lett., 18, 123902(2020).

    [10] Y. Yang, C. Ma, B. Fan, X. Wang, F. Zhang, Y. Xiang, S. Pan. Photonics-based simultaneous angle of arrival and frequency measurement system with multiple-target detection capability. J. Light. Technol., 39, 7656(2021).

    [11] S. Xu, R. Wang, X. Zou, W. Zou. Adaptive deep-learning algorithm for signal recovery of broadband microwave photonic receiving systems based on supervised training. J. Opt. Soc. Am. B, 38, 834(2021).

    [12] L. Zhao, W. Gou, Z. Zhang, M. Shen, J. Zhang, X. Zheng, Y. Peng, T. Jiang. Deep-learning-assisted linearization for the broadband photonic scanning channelized receiver. Opt. Lett., 47, 6021(2022).

    [13] W. Zhu, M. Zhang. A deep learning architecture for broadband DOA estimation. International Conference on Communication Technology(2019).

    [14] Y. Yang, F. Gao, C. Qian, G. Liao. Model-aided deep neural network for source number detection. IEEE Signal Process. Lett., 27, 91(2019).

    [15] G. Van Houdt, C. Mosquera, G. Nápoles. A review on the long short-term memory model. Artif. Intell. Rev., 53, 5929(2020).

    [16] X. Lin, Z. Quan, Z.-J. Wang, H. Huang, X. Zeng. A novel molecular representation with BiGRU neural networks for learning atom. Brief. Bioinformatics, 21, 2099(2020).

    [17] G. H. Smith, D. Novak, Z. Ahmed. Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators. IEEE Trans. Microw. Theory Tech., 45, 1410(1997).

    [18] N. Zhang, Z. Wen, X. Hou, W. Wen. Digital automatic gain control design with large dynamic range in wireless communication receivers. International Conference on Communication Technology(2017).

    [19] S. Yi, S. Xu, W. Zou. Multi-band low-noise microwave-signal receiving system with a photonic frequency down-conversion and transfer-learning network. Opt. Lett., 46, 5982(2021).

    [20] E. Liu, Z. Yu, Z. Wan, L. Shu, K. Sun, L. Gui, K. Xu. Linearized wideband and multi-carrier link based on TL-ANN. Chin. Opt. Lett., 19, 113901(2021).

    [21] M. A. Jabin, M. P. Fok. Data augmentation using a generative adversarial network for a high-precision instantaneous microwave frequency measurement system. Opt. Lett., 47, 5276(2022).

    Yin Li, Qiaosong Cai, Jie Yang, Tong Zhou, Yuanxi Peng, Tian Jiang, "Adaptive microwave photonic angle-of-arrival estimation based on BiGRU-CNN [Invited]," Chin. Opt. Lett. 21, 090001 (2023)
    Download Citation