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An adaptive microwave photonic angle-of-arrival (AOA) estimation approach based on a convolutional neural network with a
bidirectional gated recurrent unit (BiGRU-CNN) is proposed and demonstrated. Compared with the previously reported AOA
estimation methods based on phase-to-power mapping, the proposed method is unnecessary to know the frequency of the
signal under test (SUT) in advance. The envelope voltage correlation matrix is obtained from dual-drive Mach–Zehnder
modulator (N-DDMZM, N > 2) optical interferometer arrays first, and then AOA estimations are performed on different
frequency signals with the aid of BiGRU-CNN. A three-DDMZM-based experiment is carried out to assess the estimation
performance of microwave signals at three different frequencies, and the mean absolute error is only 0.1545°.
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1. Introduction

Angle-of-arrival (AOA) estimation is a vital parameter in passive
target perception fields such as radar, wireless communication,
and electronic warfare[1]. Traditionally, AOA parameters are usu-
ally obtained by utilizing electronic techniques, in whichmethods
based on phase interferometers are most widely studied due to
their high sensitivity and speed. However, for modern electronic
technology, it is a critical challenge to meet the need of large
instantaneous bandwidth. Photonic technology is well known
for its large bandwidth and low loss. Up to now, a variety of
photonics-based techniques have been proposed and developed
for microwave measurements[2]. For AOA estimation based on
microwave photonics (MWP), different optical modulators such
as the Mach–Zehnder modulator (MZM)[3], dual-drive Mach–
Zehnder modulator (DDMZM)[4,5], phase modulator (PM)[6],
dual-parallel Mach–Zehnder modulator (DPMZM)[7], and
dual-polarization dual-drive Mach-Zehnder modulator (DPol-
DDMZM)[8] are generally used as photonic interferometers to
map the arrival phase or time difference of the signal under
test (SUT) into easily measurable parameters related to power.
Although the above-mentionedmethods are simple and effective,
the frequency of SUT should be known in advance. However, the
frequencies of noncooperative signals are unknown as well as

AOA in practice. Hence, it is necessary to perform instantaneous
frequency measurement (IFM) prior to the AOA estimation. To
address this, some simultaneous AOA and frequency measure-
ment methods based on MWP are presented. A concurrent pho-
tonic measuring system based on a DPMZM and an asymmetry
Mach–Zehnder interferometer (AMZI) is proposed, AOA and
the chirp rate of a linear frequency-modulated (LFM) signal can
be measured simultaneously, which has high accuracy but is only
applicable to LFM signals[9]. In Ref. [10], frequencies and AOA of
multiple targets can be measured simultaneously by combining
the optical time-division channelized I/Q downconversion and
van Cittert–Zernike theorem. However, the channelized structure
is complex.
Recently, deep learning (DL) has drawn growing attention in

not only computer vision but also the signal processing of opto-
electronic systems. In Ref. [11], based on data-driven supervised
learning training, an adaptive deep-learning algorithm was pro-
posed for different MWP receiving systems by changing the
training data sets and retraining the same neural network. In
Ref. [12], an autoencoder-residual network was designed to
adaptively mitigate the nonlinearity and noise of the received
broadband without the need for calculating the multifactorial
nonlinear transfer functions. Additionally, the application of
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DL to direction-of-arrival estimation based on array signal
processing has also achieved significant success, and not only
greatly improves estimation performance and generalization[13],
but also can estimate the number of signal sources[14]. In sum-
mary, DL is based on a data-driven approach, which does not
require setting an a priori observed model, but learns the model
directly from the training data and adapts its own structure and
parameters according to the dynamic environment and target
characteristics.
In this paper, we propose a convolutional neural network with

a bidirectional gated recurrent unit (BiGRU-CNN) to achieve
adaptive AOA estimations without additional frequency
measurements. First, the optical interferometer array with
N-DDMZMs is constructed to obtain the envelope voltage vec-
tors, which are associated with the frequency and AOA of the
SUT. Then the BiGRU-CNN model is used to automatically
extract features and learn the frequency information from the
envelope voltage correlation matrix to establish mapping at dif-
ferent frequencies. Compared with the previous AOA estima-
tion methods based on phase-to-power mapping that require
extra IFM, the BiGRU-CNN exhibits strong generalization
and has a simpler structure and measurement process. To the
best of our knowledge, this is the first attempt to achieve
MWP adaptive AOA estimation without frequency guidance
based on a DL algorithm. In addition, the BiGRU-CNN model
can perform IFM at a specific angle, which provides a new per-
spective for realizing two-dimensional parameter estimation of
frequency and AOA.

2. Principle

Figure 1 shows a schematic diagram of the proposed system,
which consists of four main modules: the antenna array, the
optical interferometer array, the electrical processing array,
and the adaptive algorithm. The antenna array consists of
a reference antenna (A-0) and N measurement antennas
(A-1, A-2, : : : , A-N). The antenna distance between A-0 and
A-i (i = 1, 2, : : : ,N) is di. Under far-field conditions, where
the target source is far away from the antenna array, the
microwave signal arrives at each antenna array element in the
same direction, assumed to be θ. There is a time difference
between the arrival of the signal at A-0 and A-i, which can be
expressed as

τi = di sin θ=c, (1)

where c is the speed of light in vacuum. The time difference τi
causes a corresponding phase difference φi in the signals
received by the antenna array elements,

φi = τi × ωRF = 2π
di sin θ

λ
, �2�

where ωRF is the angular frequency of the incoming microwave
signal and λ is its wavelength. The optical interferometer array
includes a continuous wave laser, N DDMZMs (DDMZM-1,
DDMZM-2, : : : , DDMZM-N), and N PDs. DDMZM is a natu-
ral optical phase detector that can extend the operating band-
width and achieve phase-to-power mapping, as demonstrated
and widely used in Refs. [4,5]. A light wave is emitted from
the laser, and then equally divided into N paths, which will be
sent into each DDMZM-i channel. As is shown in Fig. 2(a),
one port of DDMZM-i is driven by the signal received by
antenna A-0, and the other port is from A-i. Under small signal
modulation, the optical field at the output of the DDMZM-i can
be expressed as

Ei ∝ E0 exp�jωct�
× �jJ1�m� exp�−jωRFt −Φi� � jJ1�m� exp�−jωRFt�
� J0�m� exp�jωRFt� � J0�m� exp�jωRFt �Φi�
� jJ1�m� exp�jωRFt� � jJ1�m� exp�jωRFt �Φi��, (3)

where E0 and ωc are the amplitude and angular frequency of the
input optical signal, respectively; Jn is the nth Bessel function of
the first kind; m = πVRF=Vπ is the modulation index of the
DDMZM; VRF is the amplitude of the received microwave sig-
nal, and Vπ is the half-wave switching voltage. Φi is the actual
phase difference of the DDMZM’s two ports,

Fig. 1. Schematic diagram of the proposed adaptive microwave photonic AOA
estimation system using BiGRU-CNN. V, envelope voltage vector; R, correlation
matrix.

Fig. 2. (a) RF signal incident on two array elements of the DDMZM-i; (b) sim-
ulation prediction of the relationship between the output envelope voltage
and AOA under different signal frequencies: di = 1.875 cm, ΔL = 0 cm;
(c) model of the BiGRU-CNN.
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Φi=2π
ΔL
λ

� φi, �4�

whereΔL is the path lengthmismatch of the transmissionmedia
between the antennas and the DDMZM. The electrical process-
ing array module converts the optical signal modulated by the
DDMZM to an electrical signal through a photodetector
(PD). Then, the direct current (DC) associated with the optical
carrier signal is removed through DC block. The detected elec-
trical signals after the DC block can be expressed as

Ii ∝ 2

����������������������
1 − cos Φi

2

r
I = 2

���� sin Φi

2

����I, (5)

where I is the RF signal with angular frequency ωRF. It can be
seen that the final obtained electrical signal is a cosine function,
which is related to Φi. To facilitate acquisition and reduce the
pressure on the sampling rate, the envelope vi of the electrical
signal is obtained by an envelope detector, which has a DC
voltage. Figure 2(b) shows the simulated relationship between
the envelope voltage vi and AOA under different frequencies.
When di and ΔL are known and fixed, AOA θ and frequency
f RF are a pair of mutually coupled factors that together deter-
mine the envelope voltage vi. However, a one-DDMZM channel
is ambiguous at the same voltage, i.e., vi corresponds to multiple
AOA and frequencies. The number of DDMZM channels needs
to be increased to obtain a set of envelope voltage vectors cor-
responding to the unique AOA and frequency. Therefore, by
using N-DDMZM sensors, an envelope voltage vector V =
�vi, v2, : : : , vN �T can be constructed that is related to AOA θ
and frequency f RF. We define the mapping relationship between
(f RF, θ) and V as

F�f RF, θ� = F�v1, v2, : : : , vN�: (6)

DL algorithms can infinitely approximate arbitrarily com-
plex mapping relationships based on the data-driven principle.
Considering that the AOA information of motion targets is con-
tinuous in reality and the correlation of samples, the AOA esti-
mation accuracy and generalization capability will be improved
using a long short-term memory (LSTM) network[15], which is
suitable for processing time-sequential data. The gated recurrent
unit (GRU) neural network simplifies the complex structure of
the LSTM cell and has faster convergence while maintaining
accuracy. The bidirectional gated recurrent unit (BiGRU) is a
layer of reverse GRU added on top of unidirectional GRU.
BiGRU not only improves the gradient disappearance but also
increases the number of neural units, which can get more
accurate prediction results[16]. Similar to array signal processing,
in order to obtain the correlation between spatial signal dimen-
sions, we map the envelope voltage vector V to a high-
dimensional space to construct the correlation matrix R,

R = VVH =

2
664

v21 · · · v1vN

..

. ..
.

vNv1 · · · v2N

3
775: (7)

Take R as the input to the model in N time steps, and each
time-step input is one row of R. To a certain extent, the data
augmentation is done to V to expand N times, and the intrinsic
pattern between channels can be better explored to improve the
accuracy. An illustration of the BiGRU-CNN structure we
employed can be found in Fig. 2(c). It mainly includes a BiGRU
layer and several feature extraction blocks. The input layer
inputs the normalized R into the BiGRU with the size of
N × N . The BiGRU layer utilizes two layers of forward and
reverse GRUs to fully learn the features of the input sequence.
The feature extraction block includes a one-dimensional (1D)
convolutional layer used for extracting the local feature and a
rectified linear unit (ReLU) as the nonlinear activation function.
The flattened layer converts multidimensional feature data into
1D data. The dense layer is equivalent to the fully connected
layer for nonlinear mapping, and the final output layer has only
one neuron representing the predicted AOA.

3. Results and Discussion

A proof-of-concept experiment based on a three-DDMZM,
shown in Fig. 3, was carried out. The light is generated by a laser
diode with 1550 nmwavelength and divided into three branches
through a 1 × 3 optical coupler (OC). All of the DDMZMs
(Fujitsu FTM7937EZ200) are biased at a quadrature transmis-
sion point. The InGaAs PD, DC block, and envelope detector
all have a bandwidth of 2–18 GHz. In order to provide a suffi-
cient SNR and compensate for the link losses of the system, a
low-noise amplifier (LNA) is connected after each antenna
and envelope detector. Finally, the three-channel electrical sig-
nals are sampled and recorded by the Virtex-7 series field pro-
grammable gate array (FPGA) processing chip with a sampling
rate of 500 MSa/s.
To ensure the authenticity of the data, data acquisition experi-

ments were carried out in a microwave darkroom in order to
exclude as much as possible the influence of external frequency
bands. The receiving antenna array consists of four 2–18 GHz
cavity-backed helical antennas, and the antenna separation dis-
tances were configured randomly: d1 = 11 cm, d2 = 23 cm, and
d3 = 36 cm. The SUT is generated by a signal generator (Rohde

Fig. 3. Experimental setup of three-DDMZM-based AOA estimation system.
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& Schwarz SMB100A) with the power of 11 dBm. The distance
between the transmitting antenna and the receiving antenna
array is 4 m. The envelope voltages V at different AOAs were
obtained by rotating the receiving antenna array in 1° steps.
Figure 4(a) shows the normalized output envelope voltage V

with respect to AOA at signal frequency 13 GHz; the frequency-
amplitude response curve with an interval of 20MHz from 13 to
14 GHz at AOA 30° is shown in Fig. 4(b). The output envelope
voltage V varies periodically by changing the AOA or frequency
of SUT, which means that the information of frequency and
AOA can be obtained simultaneously from envelope voltage
V . In order to build a clean data set for training and testing,
we averaged 20 acquisitions as final samples to mitigate the
random noise. A total of 483,000 samples were collected at dif-
ferent frequencies (3, 8, and 13 GHz) under the field of view
of −80° to 80° to build the final data set. For each AOA, 64%
of the data set is randomly selected for training, 16% for valida-
tion, and 20% for testing. The BiGRU-CNN model is optimized
to have three feature extraction blocks. The detailed parameters
of the BiGRU-CNN are shown in Table 1. After trying differ-
ent hyperparameters, we find that the current one is optimal.
Before being sent to the BiGRU-CNN, all the envelope voltages
V are normalized and multiplied by their own transpositions
to get the correlation matrix R with a size of 3 × 3. During
the training process, the mean absolute error (MAE) is chosen
as the loss function, and the Adam optimization algorithm is
applied to update the network parameters with an initial learn-
ing rate of 0.01. The training epochs are set to 500, and the batch
size is 200.
To avoid overfitting, the learning rate will be reduced by 10%,

and training will be early stopped when the validation loss is no
longer reduced after 5 epochs and 10 epochs, respectively.
The training time and test time of BiGRU-CNN are about
1 h 18 min and 54 s, respectively, on a personal computer with
Intel i7-6700 CPU (4-core). To demonstrate the superiority
of our BiGRU-CNN model, we replace the BiGRU layer of
the BiGRU-CNN model by a 1D convolutional layer with 512
filters to build a CNN model. What is more, we compare the
BiGRU-CNN and CNN with and without using correlation

matrix R as input. Figure 5 shows both the training loss and val-
idation loss as the different neural network architectures concur-
rently decrease and converge to a small value as the epochs
increase. This proves that all models are fully trained and out
of overfitting. Compared with the CNN model, the combined
BiGRU layer not only lowers the loss to a much lower level
but also converges faster. Moreover, the use of correlation
matrix R as input further enhances performance.
Figure 6 shows the experimental results and the correspond-

ing errors over a −80° to 80° measurement range at three differ-
ent frequencies. The frequency of SUT is unknown during the
test. It can been seen that our BiGRU-CNN model can perform
adaptive AOA estimation for three SUTs and exhibit excellent
performance. The MAEs of AOA estimation at each frequency
are very small, only 0.1520°, 0.1551°, and 0.1564°, respectively,
which shows the system has the ability to work across octaves. In
addition, the latency of single measurement is about 1.22 ms,
which includes the time used for computing correlation matrix
R and running the BiGRU-CNN.
To further illustrate that our model can capture and learn the

frequency information of the SUT, we collected samples from
3 to 5 GHz with a step of 20 MHz at AOA of 30° as training data
to perform frequency estimation. The training is also based on
the BiGRU-CNN model implemented in Table 1. The final two
separately trained prediction models for AOA estimation and
frequency measurement are obtained, respectively. We apply

Table 1. Parameters of the Optimized BiGRU-CNN.

Layer Output Shape Units Filter Size Number of Filters

Input 3 × 3 / / /

BiGRU 3 × 512 256 / /

Convolution-1 3 × 512 / 1 × 1 512

Convolution-2 3 × 256 / 1 × 1 256

Convolution-3 3 × 128 / 1 × 1 128

Flattened 384 / / /

Fully connected 128 128 / /

Output 1 1 / /

Fig. 4. (a) Normalized amplitude response for AOA at signal frequency 13 GHz;
(b) normalized amplitude response for frequency at AOA 30°.

Fig. 5. (a) Training loss and (b) validation loss of different neural network
architectures during training.
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a 3 GHz pulsed signal (width 1 μs, period 2 μs for a 20 μs dura-
tion) that two BiGRU-CNNmodels have not seen before to per-
form frequency and AOA estimation based on two separately
trained models in real time. Figure 7 shows the comparison
between the actual frequency and estimated frequency, and
the corresponding error is indicated by a green crossing marker.
The estimated frequency within the time of pulse appears to
match very well with the actual frequency. The MAE of the
IFM is 10.1 MHz. On the other hand, the MAE of AOA estima-
tion is 0.3727° during the whole pulse duration, which demon-
strates that our method is capable of measuring not only
continuous wave signals, but also pulsed signals.
Just like most methods based on phase-to-power mapping,

the power variation of the SUT may influence the measure-
ment results. Theoretically, the effect of SUT power can be cali-
brated by normalizing the output envelope signal voltage V [17].
However, for real-world applications, there exists amplitude
imbalance between multiple channels because the component
cannot perform ideally. To address this, the automatic gain con-
trol (AGC) module can be added after the antenna array to keep
the input signal power at a stable value[18], and eventually the DL
algorithm can learn these inherent errors based on a data-driven
mechanism. On the other hand, although DL has shown great
results in improving the performance of microwave photonic
systems, it requires a large amount of experimental data, which
is extremely time- and resource-consuming. In the future, to
achieve AOA adaptive estimation in practical applications or
even simultaneous measurement of AOA and frequency, it is
not only necessary to collect data at more frequencies, but also
to increase the number of DDMZM channels to solve the

ambiguity problem. The number of data required is even huger.
We can reduce training cost and alleviate the reliance on large
numbers of data through transfer learning[19,20] or data augmen-
tation via a generative adversarial network[21].

4. Conclusions

In conclusion, an adaptive AOA estimation algorithm using
BiGRU-CNN based on an N-DDMZM array system is pro-
posed. The BiGRU-CNN model can perform high accuracy
AOA estimations of different frequency signals without addi-
tional IFM. A proof-of-concept experiment was conducted to
verify the performance of the AOA estimation at three different
frequencies, and the MAE is 0.1545°. Moreover, our method
demonstrates the ability to perform real-time IFM at specific
angles, which has great potential for further application to mea-
sure AOA and frequency simultaneously.
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