• Photonic Sensors
  • Vol. 5, Issue 2, 166 (2015)
A. ARIFIN1、2、*, A. M. HATTA3、4, SEKARTEDJO3, M. S. MUNTINI1, and and A. RUBIYANTO1
Author Affiliations
  • 1Department of Physics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
  • 2Department of Physics, Hasanuddin University, Makassar 90245, Indonesia
  • 3Departement of Engineering Physics, Institut Teknologi Sepuluh Nopember, Surabaya 6011, Indonesia
  • 4Department of Physics, Jazan University, Jazan 45-142, Saudi Arabia
  • show less
    DOI: 10.1007/s13320-015-0225-4 Cite this Article
    A. ARIFIN, A. M. HATTA, SEKARTEDJO, M. S. MUNTINI, and A. RUBIYANTO. Long-Range Displacement Sensor Based on SMS Fiber Structure and OTDR[J]. Photonic Sensors, 2015, 5(2): 166 Copy Citation Text show less
    References

    [1] B. Lee, “Review of the present status of optical fiber sensors,” Optical Fiber Technology, 2003, 9(2): 57-79.

    [2] M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring — present status and applications,” Sensors and Actuators A: Physical, 2008, 147(1): 150-164.

    [3] H. Gnewuch, E. Smeu, D. A. Jackson, and A. G. Podoleanu, “Long range extensometer for civil structure monitoring using fibre Bragg gratings,” Measurement Science and Technology, 2005, 16(10): 2005-2010.

    [4] K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” Journal of Lightwave Technology, 1997, 15(8): 1263-1276.

    [5] Y. Zhao and Y. Liao, ”Discrimination methods and demodulation techniques for fiber Bragg grating sensors,” Optics Lasers in Engineering, 2004, 41(1): 1-18.

    [6] D. Donlagic and M. Zavrsnik, “Fiber-optic microbend sensor structure,” Optics Letters, 1997, 22(11): 837-839.

    [7] A. Kumar, R. K. Varshney, and R. Kumar, “SMS fiber optic microbend sensor structures: effect of the modal interference,” Optics Communications, 2004, 232(1-6): 239-244.

    [8] Q. Wu, A. M. Hatta, P. Wang, Y. Semenova, and G. Farrell, “Use of a bent single SMS fiber structure for simultaneous measurement of displacement and temperature sensing,” IEEE Photonics Technology Letters, 2011, 23(2): 130-132.

    [9] A. M. Hatta, Y. Semenova, G. Rajan, and G. Farrell, “A voltage sensor based on a singlemode-multimodesinglemode fiber structure,” Microwave and Optical Technology Letters, 2010, 52(8): 1887-1890.

    [10] Q. Wu, A. M. Hatta, Y. Semenova, and G. Farrell, “Use of a single-multiple-single-mode fiber filter for interrogating fiber Bragg grating strain sensors with dynamic temperature compensation,” Appied Optics, 2009, 48(29): 5451-5458.

    [11] A. M. Hatta, H. E. Permana, H. Setijono, A. Kusumawardhani, and Sekartedjo, “Strain measurement based on SMS fiber structure sensor and OTDR,” Microwave and Optical Technology Letters, 2013, 55(11): 2576-2578.

    [12] A. M. Hatta, K. Indriawati, T. Bestariyan, T. Humada, and Sekartedjo, “SMS fiber structure for temperature measurement using an OTDR,” Photonics Sensors, 2013, 3(3): 262-266.

    [13] N. M. P. Pinto, O. Frazao, J. M. Baptista, and J. L. Santos. “Quasi-distributed displacement sensor for structural monitoring using a commercial OTDR,” Optics and Lasers in Engineering, 2006, 44(8): 771-778.

    [14] S. M. Tripathi, A. Kumar, R. K. Varshney, Y. Kumar, E. Marin, and J. P. Meunier, “Strain and temperature sensing characteristics of single-mode-multimodesingle-mode structures,” Journal of Lightwave Technology, 2009, 27(13): 2348-2356.

    [15] A. M. Hatta, Y. Semenova, Q. Wu, and G. Farrell. “Strain sensor based on a pair of single-modemultimode-single-mode fiber structures in a ratiometric power measurement scheme,” Applied Optics, 2010, 49(3): 536-541.

    A. ARIFIN, A. M. HATTA, SEKARTEDJO, M. S. MUNTINI, and A. RUBIYANTO. Long-Range Displacement Sensor Based on SMS Fiber Structure and OTDR[J]. Photonic Sensors, 2015, 5(2): 166
    Download Citation