• Infrared and Laser Engineering
  • Vol. 50, Issue 9, 20210428 (2021)
Haichao Zhan1, Le Wang1, Qin Peng1, Wennai Wang2, and Shengmei Zhao1、2
Author Affiliations
  • 1Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
  • 2Key Lab of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
  • show less
    DOI: 10.3788/IRLA20210428 Cite this Article
    Haichao Zhan, Le Wang, Qin Peng, Wennai Wang, Shengmei Zhao. Progress in adaptive optics wavefront correction technology of vortex beam (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210428 Copy Citation Text show less
    References

    [1] A E Willner, H Huang, Y Yan, et al. Optical communications using orbital angular momentum beams. Advances in Optics and Photonics, 7, 66-106(2015).

    [2] F Zhu, S Huang, W Shao, et al. Free-space optical communication link using perfect vortex beams carrying orbital angular momentum. Optics Communications, 396, 50-57(2017).

    [3] A M Yao, M J Padgett. Orbital angular momentum: Origins, behavior and applications. Advances in Optics and Photonics, 3, 161-204(2011).

    [4] M J Padgett, R Bowman. Tweezers with a twist. Nature Photonics, 5, 343-348(2011).

    [5] S Franke-Arnold, L Allen, M J Padgett. Advances in optical angular momentum. Laser and Photonics Reviews, 2, 299-313(2008).

    [6] Xuanhui Lu, He Chen, Chengliang Zhao. Research on vortex beams and optical vortices. Infrared and Laser Engineering, S1, 174(2007).

    [7] L Allen, M W Beijersbergen, R J C Spreeuw, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 45, 8185(1992).

    [8] J Wang, J Y Yang, I M Fazal, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 6, 488-496(2012).

    [9] B Nenad, Y Yue, Y X Ren, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [10] C Paterson. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Physical Review Letters, 94, 153901(1-4)(2005).

    [11] Y Ren, H Huang, G Xie, et al. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing. Optics Letters, 38, 4062-4065(2013).

    [12] X L Zhu, L Guo, Q Zhu, et al. The propagation properties of a longitudinal orbital angular momentum multiplexing system in atmospheric turbulence. IEEE Photonics Journal, 10, 112-114, 135(2018).

    [13] Ce Yu, Tianshu Wang, Ying Zhang, et al. Research on transmission performance on OAM beam and Gaussian beam in atmospheric turbulence channel. Infrared and Laser Engineering, 50, 20200400(2021).

    [14] Y Zhang, P Wang, T Liu, et al. Performance analysis of a LDPC coded OAM-based UCA FSO system exploring linear equalization with channel estimation over atmospheric turbulence. Optics Express, 26, 22182-22196(2018).

    [15] S H Li, S Chen, C Q Gao, et al. Atmospheric turbulence compensation in orbital angular momentum communications: advances and perspectives. Optics Communications, 408, 68-81(2018).

    [16] S M Zhao, L Wang, L Zou, et al. Both channel coding and wavefront correction on the turbulence mitigation of optical communications using orbital angular momentum multiplexing. Optics Communications, 376, 92-98(2016).

    [17] Li Zou, Le Wang, Shibing Zhang, et al. Compensation of orbital-angular-momentum multiplexed communication system with wavefront correction. Journal on Communications, 36, 76-84(2015).

    [18] L Zou, L Wang, S M Zhao. Turbulence mitigation scheme based on spatial diversity in orbital-angular-momentum multiplexed system. Optics Communications, 400, 123-127(2017).

    [19] Chunqing Gao, Shikun Zhang, Shiyao Fu, et al. Adaptive optics wavefront correction techniques of vortex beams. Infrared and Laser Engineering, 46, 0201001(2017).

    [20] M Aftab, H J Choi, R G Liang, et al. Adaptive Shack-Hartmann wavefront sensor accommodating large wavefront variations. Optics Express, 26, 34428-34441(2018).

    [21] S M Zhao, J Leach, L Y Gong, et al. Aberration corrections for free-space optical communications in atmosphere turbulence using Orbital Angular Momentum states. Optics Express, 20, 452-461(2012).

    [22] L J Hu, S W Hu, W Gong, et al. Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection. Optics Express, 27, 33504-33517(2019).

    [23] M Li, Y Li, J Han, et al. Gerchberg–Saxton algorithm based phase correction in optical wireless communication. Physical Communication, 25, 323-327(2017).

    [24] S Fu, S Zhang, T Wang, et al. Pre-turbulence compensation of orbital angular momentum beams based on a probe and the Gerchberg-Saxton algorithm. Optics Letters, 41, 3185-3188(2016).

    [25] G Xie, Y Ren, H Huang, et al. Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm. Optics Letters, 40, 1197-1200(2015).

    [26] Z L Xie, H T Ma, X J He, et al. Adaptive piston correction of sparse aperture systems with stochastic parallel gradient descent algorithm. Optics Express, 26, 9541-9551(2018).

    [27] Ping Yang, Bing Xu, Wenhan Jiang, et al. Study of a genetic algorithm used in an adaptive optical system. Acta Optica Sinica, 27, 1628-1632(2007).

    [28] Zhan Yu, Haotong Ma, Shaojun Du. Adaptive near-field beam shaping based on simulated annealing algorithm. Acta Optica Sinica, 31, 163-167(2011).

    [29] J Li, M Zhang, D S Wang, et al. Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM-FSO communication. Optics Express, 26, 10494-10508(2018).

    [30] Q H Tian, Z Li, K Hu, et al. Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator. Optics Express, 26, 27849-27864(2018).

    [31] R G Lane, M Tallon. Wave-front reconstruction using a Shack-Hartmann. Applied Optics, 31, 6902-6906(1992).

    [32] Zhao S M, Leach J, Zheng B Y. Crection effect of SharkHartmann algithm on turbulence aberrations f free space optical communications using bital angular momentum[C]International Conference on Communication Technology Proceedings, ICCT, 2010: 580583.

    [33] Y Ren, G Xie, H Huang, et al. Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence. Optics Letters, 39, 2845-2848(2014).

    [34] M A Vorontsov, V P Sivokon. Stochastic-parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction. Journal of the Optical Society of America A, 15, 2745-2758(1998).

    [35] Wang Xiayao. Research on adaptive optics crection technology of vtex beam[D]. Xi''an: Xi''an University of Technology, 2018. (in Chinese)

    [36] Yin X L, Lin J L, Chang H, et al. A new version of Stochasticparallelgradientdescent algithm (SPGD) f phase crection of a distted bital angular momentum (OAM) beam[C]Proceedings of the SPIE, 2018: 106973B.

    [37] Y LeCun, Y Bengio, G Hinton. Deep learning. Nature, 521, 436-444(2015).

    [38] T Doster, A T Watnik. Machine learning approach to OAM beam demultiplexing via convolutional neural networks. Applied Optics, 56, 3386-3396(2017).

    [39] Q H Tian, C D Lu, B Liu, et al. DNN-based aberration correction in a wavefront sensorless adaptive optics system. Optics Express, 27, 10765-10776(2019).

    [40] H M Ma, H Q Liu, Y Qiao, et al. Numerical study of adaptive optics compensation based on Convolutional Neural Networks. Optics Communications, 433, 283-289(2019).

    [41] J M Liu, P P Wang, X K Zhang, et al. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication. Optics Express, 27, 16671-16688(2019).

    [42] Y W Zhai, S Y Fu, J Q Zhang, et al. Turbulence aberration correction for vector vortex beams using deep neural networks on experimental data. Optics Express, 28, 7515-7527(2020).

    [43] Y Zhao, A Wang, L Zhu, et al. Performance evaluation of underwater optical communications using spatial modes subjected to bubbles and obstructions. Optics Letters, 42, 4699-4702(2017).

    [44] B Cochenour, K Morgan, K Miller, et al. Propagation of modulated optical beams carrying orbital angular momentum in turbid water. Applied Optics, 55, C34-C38(2016).

    [45] J Baghdady, K Miller, K Morgan, et al. Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing. Optics Express, 24, 9794-9805(2016).

    [46] Tianxing Yang, Shengmei Zhao. Random phase screen model of ocean turbulence. Acta Optica Sinica, 37, 1201001(2017).

    [47] S X Pan, L Wang, W N Wang, et al. An effective way for simulating oceanic turbulence channel on the beam carrying orbital angular momentum. Scientific Reports, 9, 14009(2019).

    [48] H C Zhan, L Wang, W N Wang, et al. Experimental analysis of adaptive optics correction methods on the beam carrying orbital angular momentum mode through oceanic turbulence. Optik, 240, 166990(2021).

    Haichao Zhan, Le Wang, Qin Peng, Wennai Wang, Shengmei Zhao. Progress in adaptive optics wavefront correction technology of vortex beam (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210428
    Download Citation