• Journal of Innovative Optical Health Sciences
  • Vol. 7, Issue 3, 1450010 (2014)
Xiqi Li1、2, Guohua Shi1、2, Ping Huang3, and Yudong Zhang1、2、*
Author Affiliations
  • 1The Key Laboratory on Adaptive Optics Chinese Academy of Sciences Chengdu 610209, P. R. China
  • 2Institute of Optics and Electronics Chinese Academy of Sciences Chengdu 610209, P. R. China
  • 3Department of Ophthalmology Peking University Third Hospital Beijing 100191, P. R. China
  • show less
    DOI: 10.1142/s1793545814500102 Cite this Article
    Xiqi Li, Guohua Shi, Ping Huang, Yudong Zhang. Acceleration of optical coherence tomography signal processing by multi-graphics processing units[J]. Journal of Innovative Optical Health Sciences, 2014, 7(3): 1450010 Copy Citation Text show less
    References

    [1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Pulifito, "Optical coherence tomography," Science 254, 1178–1181 (1991).

    [2] L. An et al., "High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second," Biomed. Opt. Express 2 (10), 2770–2783 (2011).

    [3] C. Blatter et al., "Ultrahigh-speed non-invasive widefield angiography," J. Biomed. Opt. 17(7), 070505 (2012).

    [4] J. Xu, C. Zhang, J. Xu et al., 5 MHz all-optical sweptsource coherence tomography based on amplified dispersive Fourier transform, Novel Techniques in Microscopy, Waikoloa Beach, Hawaii, US, NW5B (2013).

    [5] K. Goda, A. Fard, O. Malik et al., "High-throughput optical coherence tomography at 800 nm," Opt. Express 20(18), 19612–19614 (2012).

    [6] NVIDIA CUDA. Available at http://developer. nvidia.com/object/cuda.html.

    [7] K. Zhang, J. U. Kang, "Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system," Opt. Express 18, 11772–11784 (2010).

    [8] Y. Jian, K. Wong, M. V. Sarunic, "Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering," J. Biomed. Opt. 18(2), 026002 (2013).

    [9] C. Dorrer, N. Belabas, J.-P. Likforman, M. Joffre, "Spectral resolution and sampling issues in Fouriertransform spectral interferometry," J. Opt. Soc. Am. B 17, 1795–1802 (2000).

    [10] Y. Watanabe, S. Maeno, K. Aoshima, H. Hasegawa, H. Koseki, "Real-time processing for full-range Fourier-domain optical-coherence tomography with zero-filling interpolation using multiple graphic processing units," Appl. Opt. 49(25), 4756–4762 (2010).

    [11] K. Zhang, J. U. Kang, "Graphics processing unitbased ultrahigh speed real-time fourier domain optical coherence tomography," IEEE. Sel. Top. 8(4), 1270–1279 (2012).

    [12] Y. Zhang, X. Li, L. Wei, K. Wang, Z. Ding, G. Shi, "Time-domain interpolation for Fourier-domain optical coherence tomography," Opt. Lett. 34, 18490–1851 (2009).

    [13] X. Li, G. Shi et al., "Time-domain interpolation on graphics processing unit," J. Innov. Opt. Health Sci. 4(01), 89–95 (2011).

    [14] X. Li, G. Shi et al., "High-speed spectral domain optical coherence tomography signal processing with time-domain interpolation using graphics processing unit," J. Innov. Opt. Health Sci. 4(03), 325–335 (2011).

    Xiqi Li, Guohua Shi, Ping Huang, Yudong Zhang. Acceleration of optical coherence tomography signal processing by multi-graphics processing units[J]. Journal of Innovative Optical Health Sciences, 2014, 7(3): 1450010
    Download Citation