• Laser & Optoelectronics Progress
  • Vol. 58, Issue 1, 100006 (2021)
You Guanhong1, Peng Wanjing2, and Zou Hui1、*
Author Affiliations
  • 1College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
  • 2Institute of Applied Electronics, Chinese Academy of Engineering Physics, Mianyang, Sichuan 621054,China
  • show less
    DOI: 10.3788/LOP202158.0100006 Cite this Article Set citation alerts
    You Guanhong, Peng Wanjing, Zou Hui. Research Progress of Frequency-Swept Fiber Lasers Based on Optical Filter[J]. Laser & Optoelectronics Progress, 2021, 58(1): 100006 Copy Citation Text show less
    References

    [1] Yao S Z. Research on mode converter and optical fiber laser based on few-mode optical fiber[D]. Beijing: Beijing Jiaotong University(2019).

    [2] Fang D J, Tong X L, Zhang C et al. High-speed swept laser source based on optical buffer device within ring cavity[J]. Laser & Optoelectronics Progress, 57, 011407(2020).

    [3] Qin X W. Studies on frequency shifted and swept technique of multi-wavelength fiber laser[D]. Tianjin: Tianjin University(2014).

    [4] Fu J J. Mode locking pulse fiber laser and its application in optical sensing and optical microwave generation[D]. Hangzhou: Zhejiang University(2012).

    [5] Yun S H, Richardson D J, Richardson D J et al. Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser[J]. Optics Letters, 23, 843-845(1998).

    [6] Takubo Y, Yamashita S. High-speed dispersion-tuned wavelength-swept fiber laser using a reflective SOA and a chirped FBG[J]. Optics Express, 21, 5130-5139(2013). http://www.ncbi.nlm.nih.gov/pubmed/23482047

    [7] Zhu X N, Mao Y X, Liang Y M et al. Noise analyses of optical coherence tomography systems(Ⅱ):Fourier domain and time domain OCT systems[J]. Acta Photonica Sinica, 36, 457-461(2007).

    [8] Fercher A F, Drexler W, Hitzenberger C K et al. Optical coherence tomography-principles and applications[J]. Reports on Progress in Physics, 66, 239-303(2003).

    [9] Sun W, Li J N, Qi L Y et al. Detection of dental root fractures based on endoscopic swept source optical coherence tomography[J]. Acta Optica Sinica, 39, 0811002(2019).

    [10] Chang Y, Cui Q F, Piao M X. Optical design of Michelson interferometer based line-field swept source optical coherence tomography system[J]. Acta Optica Sinica, 38, 0608002(2018).

    [11] Ryu S Y, You J W, Kwak Y K et al. Design of a prism to compensate the image-shifting error of the acousto-optic tunable filter[J]. Optics Express, 16, 17138-17147(2008).

    [12] Glombitza U, Brinkmeyer E. Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides[J]. Journal of Lightwave Technology, 11, 1377-1384(1993). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=254098

    [13] Liu G Y, Mariampillai A, Standish B A et al. High power wavelength linearly swept mode locked fiber laser for OCT imaging[J]. Optics Express, 16, 14095-14105(2008).

    [14] Chinn S R, Swanson E A, Fujimoto J G. Optical coherence tomography using a frequency-tunable optical source[J]. Optics Letters, 22, 340-342(1997).

    [15] Luo S T, Fan Y W, Chang W et al. Boundary region of stomach mucinous carcinoma with swept source optical coherence tomography[J]. Acta Optica Sinica, 38, 0517001(2018).

    [16] Lu X Q. Development of wide bandwidth swept source with narrow instantaneous linewidth[D]. Hangzhou: Zhejiang University(2014).

    [17] Moon S, Kim D Y. Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source[J]. Optics Express, 14, 11575-11584(2006).

    [18] Yun S H, Boudoux C, Tearney G J et al. High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter[J]. Optics Letters, 28, 1981-1983(2003).

    [19] Chong C, Suzuki T, Morosawa A et al. Spectral narrowing effect by quasi-phase continuous tuning in high-speed wavelength-swept light source[J]. Optics Express, 16, 21105-21118(2008). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-25-21105

    [20] Yun S H. Tearney G, de Boer J, et al. Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts[J]. Optics Express, 12, 5614-5624(2004).

    [21] Lim H, de Boer J F, Park B H et al. Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range[J]. Optics Express, 14, 5937-5944(2006).

    [22] Chong C, Morosawa A, Sakai T. High-speed wavelength-swept laser source with high-linearity sweep for optical coherence tomography[J]. IEEE Journal of Selected Topics in Quantum Electronics, 14, 235-242(2008).

    [23] Oh W Y, Yun S H, Tearney G J et al. 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser[J]. Optics Letters, 30, 3159-3161(2005). http://europepmc.org/articles/PMC2713038/

    [24] Motaghian Nezam S M. High-speed polygon-scanner-based wavelength-swept laser source in the telescope-less configurations with application in optical coherence tomography[J]. Optics Letters, 33, 1741-1743(2008).

    [25] Ko M O, Kim N, Han S P et al. Characteristics of a wavelength-swept laser with a polygon-based wave-length scanning filter[J]. Hankook Kwanghak Hoeji, 25, 61-66(2014).

    [26] Leung M K, Mariampillai A, Standish B A et al. High-power wavelength-swept laser in Littman telescope-less polygon filter and dual-amplifier configuration for multichannel optical coherence tomography[J]. Optics Letters, 34, 2814-2816(2009).

    [27] Huber R, Wojtkowski M, Taira K et al. Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles[J]. Optics Express, 13, 3513-3528(2005). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-9-3513

    [28] Xu R R. High-speed broad bandwidth swept source at 1 μm[D]. Chengdu: University of Electronic Science and Technology of China(2015).

    [29] Trifanov I, Neagu L, Bradu A et al. Characterization of a fibre optic swept laser source at 1 μm for optical coherence tomography imaging systems. [C]//SPIE Bios. International Society for Optics and Photonics(2011).

    [30] Choma M A, Hsu K, Izatt J A . Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source[J]. Journal of Biomedical Optics, 10, 044009(2005). http://new.med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_JJ025585193

    [31] Liang Y. Fourier domain mode locking swept laser technology and its application in fiber sensor system[D]. Harbin: Harbin Institute of Technology(2013).

    [32] Li P, Yang S S, Ding Z H et al. Research progress in Fourier domain optical coherence tomography[J]. Chinese Journal of Lasers, 45, 0207011(2018).

    [33] Zhang J, Wang Q, Rao B et al. Swept laser source at 1 μm for Fourier domain optica coherence tomography[J]. Applied physics letters, 89, 073901(2006).

    [34] Huber R, Wojtkowski M, Fujimoto J G. Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography[J]. Optics Express, 14, 3225-3237(2006). http://www.ncbi.nlm.nih.gov/pubmed/19516464

    [35] Huber R, Adler D C, Fujimoto J G. Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s[J]. Optics Letters, 31, 2975-2977(2006).

    [36] Christoph M E, Wolfgang W, Benjamin R B et al. Subharmonic Fourier domain mode locking[J]. Optics Letters, 34, 725-727(2009).

    [37] Bonesi M, Sattmann H, Torzicky T et al. High-speed polarization sensitive optical coherence tomography scan engine based on Fourier domain mode locked laser: erratum[J]. Biomedical Optics Express, 3, 2987-3000(2012).

    [38] Choi B K, Jeon M Y. Resonance fiber bragg grating sensor system based on Fourier domain mode-locking laser[J]. Hankook Kwanghak Hoeji, 23, 211-216(2012).

    [39] Wang P F, Tong X L, Deng C W et al. High-speed broadband swept source[J]. Laser & Optoelectronics Progress, 56, 201101(2019).

    [40] Chen M H, Fan Y P, Zhang H et al. Swept source laser based on acousto-optic tuning[J]. Optics and Precision Engineering, 24, 2658-2664(2016).

    [42] Li H B, Tan Z W, Kong M L et al. Linear frequency scanning laser based on acousto-optic modulation[J]. Chinese Journal of Lasers, 46, 1201004(2019).

    [43] Yun S H, Richardson D J, Culverhouse D O et al. Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter[J]. IEEE Journal of Selected Topics in Quantum Electronics, 3, 1087-1096(1997). http://ieeexplore.ieee.org/document/649546/citations?tabFilter=patents

    [44] Huo T, Zhang J, Zheng J G et al. Linear-in-wavenumber swept laser with an acousto-optic deflector for optical coherence tomography[J]. Optics Letters, 39, 247-250(2014).

    [45] Chen M H, Li H, Chen R. Swept laser source based on acousto-optic tunable filter[J]. Proceedings of SPIE, 9297, 92970Q(2014). http://spie.org/x648.xml?product_id=2071321

    [46] Cao J, Wang P H, Zhang Y et al. Methods to improve the performance of the swept source at 1.0 μm based on a polygon scanner[J]. Photonics Research, 5, 245-250(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ170526000232oUqXt1

    [47] Hariri S, Moayed A A, Dracopoulos A et al. Limiting factors to the OCT axial resolution for in vivo imaging of human and rodent retina in the 1060 nm wavelength range[J]. Optics Express, 17, 24304-24316(2009).

    [48] Song S Y, Li Z L, Gao Y H et al. Swept source optical coherence tomography system for transdermal drug delivery imaging by microneedles[J]. Chinese Journal of Lasers, 45, 0807001(2018).

    [49] Chen M H, Jia W Y, He J T et al. Development of swept source based on dual filtering[J]. Optics and Precision Engineering, 26, 2355-2362(2018).

    You Guanhong, Peng Wanjing, Zou Hui. Research Progress of Frequency-Swept Fiber Lasers Based on Optical Filter[J]. Laser & Optoelectronics Progress, 2021, 58(1): 100006
    Download Citation