• Journal of Inorganic Materials
  • Vol. 36, Issue 4, 405 (2021)
Weiwei SANG1、2, Hongsong ZHANG2、*, Huahui CHEN1, Bin WEN2, and Xinchun LI2
Author Affiliations
  • 11. School of Mechanical Electronic & Information Engineering, China University of Mining & Technology-Beijing, Beijing 10083, China
  • 22. College of Mechanical Engineering, Henan University of Engineering, Zhengzhou 451191, China
  • show less
    DOI: 10.15541/jim20200489 Cite this Article
    Weiwei SANG, Hongsong ZHANG, Huahui CHEN, Bin WEN, Xinchun LI. Preparation and Thermophysical Properties of (Sm0.2Gd0.2Dy0.2Y0.2Yb0.2)3TaO7 High-entropy Ceramic[J]. Journal of Inorganic Materials, 2021, 36(4): 405 Copy Citation Text show less
    References

    [1] V KUMAR, K BALASUBRAMANIAN. Progress update on failure mechanisms of advanced thermal barrier coatings: a review. Progress in Organic Coatings, 90, 54-82(2016).

    [2] R DAROLIA. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. International Materials Reviews, 58, 315-348(2013).

    [3] XIAO-GE CHENG, HONG-SONG ZHANG, YAN-XU LIU et al. Thermal properties of RE2AlTaO7 (RE=Gd and Yb) oxide. Ceramics International, 44, 10762-10765(2018).

    [4] CHUANG LI, YI ZHANG, DING-YU HU et al. Effects of thermal barrier ceramic coating materials on diesel engine piston. Surface Technology, 46, 149-153(2017).

    [5] QIAO-MU LIU, SHUN-ZHOU HUANG, AI-JIE HE et al. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines. Journal of Materials Science & Technology, 35, 2814-2823(2019).

    [6] GUANG-RONG LI, HUA XIE, GGUAN-JUN YAN et al. A comprehensive sintering mechanism for TBCs- part II: multiscale multipoint interconnection-enhanced initial kinetics. Journal of the American Ceramic Society, 100, 4240-4251(2017).

    [7] HONG-SONG ZHANG, YU-PING TONG, XIAN-FENG YANG et al. Synthesis and thermophysical performances of complex Ca3Ln3 Ti7Ta2O26.5 (Ln=Dy and Er) oxide. Ceramics International, 46, 2862-2867(2020).

    [8] ZHOU-YANG LIU, JIN-XIN YU, QIANG LI. Finite element sim- ulation of ceramic layer/TGO interfacial crack on thermal barrier coating. Surface technology, 46, 70-76(2017).

    [9] HAO-MING ZHANG, FENG YAN, XIAO-GE CHEN et al. Thermal properties of La3TaO7 and La2AlTaO7 oxides. Ceramics International, 43, 755-759(2017).

    [10] SHI-MIN WANG, BIN LI, DE-BING SUN et al. Thermal and mechanical performances of Nd2LaTaO7 oxide. Ceramics International, 45, 10718-10721(2019).

    [11] XIAO-GE CHEN, AN TANG, HONG-SONG ZHANG et al. Thermal conductivity and expansion coefficient of Ln2LaTaO7 (Ln=Er and Yb) oxides for thermal barrier coating applications. Ceramics International, 42, 13491-13496(2016).

    [12] FU-SHUO WU, PENG WU, LIN CHEN et al. Structure and thermal properties of Al2O3-doped Gd3TaO7 as potential thermal barrier coating. Journal of the European Ceramic Society, 39, 2210-2214(2019).

    [13] LIN CHEN, PENG WU, PENG SONG et al. Synthesis, crystal structure and thermophysical properties of (La1-xEux)3TaO7 ceramics. Ceramics International, 44, 16273-16281(2018).

    [14] LIN CHEN, PENG WU, JING FENG. Optimization thermophysical properties of TiO2 alloying Sm3TaO7 ceramics as promising thermal barrier coatings. International Journal of Applied Ceramic Technology, 16, 230-242(2019).

    [15] M ROST C, E SACHET, T BORMAN et al. Entropy-stabilized oxides. Nature Communications, 6, 8485-8485(2015).

    [16] JIEN-WEI YEH, SHOU-YI CHANG, YU-DER HONG et al. Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co- Cr-Fe-Si alloy systems with multi-principal elements. Materials Chemistry and Physics, 103, 41-46(2007).

    [17] ZI-FAN ZHAO, HUI-MIN XIANG, ZHI-JIAN PENG et al. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: a novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate. Journal of Materials Science & Technology, 35, 2647-2651(2019).

    [18] ZI-FAN ZHAO, HUI-MIN XIANG, FU-ZHI DAI et al. (La0.2 - Ce0.2Nd0.2Sm0.2Eu0.2)2PO4: a high entropy rare-earth phosphate monazite ceramic with low thermal conductivity and good compatibility with Al2O3. Journal of Materials Science & Technology, 35, 2892-2896(2019).

    [19] FEI LI, LIN ZHOU, JI-XUAN LIU et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. Journal of Advanced Ceramics, 8, 576-582(2019).

    [20] XIAO-MIN REN, ZHI-LIN TIAN, JIE ZHANG et al. Equiatomic quaternary (Y1/4Ho1/4Er1/4Yb1/4)2SiO5 silicate: a perspective multifunctional thermal and environmental barrier coating material. Scripta Materialia, 168, 47-50(2019).

    [21] KE REN, QIAN-KUN WANG, GANG SHAO et al. Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating. Scripta Materialia, 178, 382-386(2020).

    [22] ZI-FAN ZHAO, HENG CHEN, HUI-MIN XIANG et al. High entropy defective fluorite structured rare-earth niobates and tantalates for thermal barrier applications. Journal of Advanced Ceramics, 9, 303-311(2020).

    [23] CHANG-AN WANG, HAO-RAN LU, ZE-YA HUANG et al. Enhanced anti-deliquescent property and ultralow thermal conductivity of magnetoplumbite-type LnMeAl11O19 materials for thermal barrier coating. Journal of the American Ceramic Society, 101, 1095-1104(2018).

    [24] JUN-FENG GU, JI ZOU, FAN ZHANG et al. Research progress in high entropy ceramic materials. Materials China, 38, 855-865, 886(2019).

    [25] JIE WU, XUE-ZHENG WEI, P PADTURE N et al. Low-thermal conductivity rare earth zirconates for potential thermal barrier coating applications. Journal of the American Ceramic Society, 85, 3031-3035(2002).

    [26] WEI-WEI SANG, SHU-SEN YANG, YU KANG et al. Numerical simulation of thermal shock stress of Sm2Ce2O7 thermal barrier coatings with different matrix materials. China Ceramics, 56, 45-51(2020).

    [27] Y ARAI, R INOUE. Detection of small delamination in mullite/ Si/SiC model EBC system by pulse thermography. Journal of Advanced Ceramics, 8, 438-447(2019).

    Weiwei SANG, Hongsong ZHANG, Huahui CHEN, Bin WEN, Xinchun LI. Preparation and Thermophysical Properties of (Sm0.2Gd0.2Dy0.2Y0.2Yb0.2)3TaO7 High-entropy Ceramic[J]. Journal of Inorganic Materials, 2021, 36(4): 405
    Download Citation