• Photonics Research
  • Vol. 12, Issue 1, 27 (2024)
Changsheng Zheng1, Tianyi Du1, Lei Zhu1, Zhanxin Wang1, Kangzhen Tian1、4, Yongguang Zhao1、*, Zhiyong Yang1, Haohai Yu2, and Valentin Petrov3
Author Affiliations
  • 1Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
  • 2State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
  • 3Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
  • 4e-mail: kangzhentian@jsnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.507488 Cite this Article Set citation alerts
    Changsheng Zheng, Tianyi Du, Lei Zhu, Zhanxin Wang, Kangzhen Tian, Yongguang Zhao, Zhiyong Yang, Haohai Yu, Valentin Petrov. Direct amplification of femtosecond optical vortices in a single-crystal fiber[J]. Photonics Research, 2024, 12(1): 27 Copy Citation Text show less
    References

    [1] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [2] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [3] A. Mair, A. Vaziri, G. Weihs. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313-316(2001).

    [4] A. Sit, F. Bouchard, R. Fickler. High-dimensional intracity quantum cryptography with structured photons. Optica, 4, 1006-1010(2017).

    [5] K. I. Willig, S. O. Rizzoli, V. Westphal. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature, 440, 935-939(2006).

    [6] R. Géneaux, A. Camper, T. Auguste. Synthesis and characterization of attosecond light vortices in the extreme ultraviolet. Nat. Commun., 7, 12583(2016).

    [7] L. Rego, J. San Román, A. Picón. Nonperturbative twist in the generation of extreme-ultraviolet vortex beams. Phys. Rev. Lett., 117, 163202(2016).

    [8] N. M. Litchinitser. Structured light meets structured matter. Science, 337, 1054-1055(2012).

    [9] J. Ni, C. Wang, C. Zhang. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci. Appl., 6, e17011(2017).

    [10] D. N. Neshev, A. Dreischuh, G. Maleshkov. Supercontinuum generation with optical vortices. Opt. Express, 18, 18368-18373(2010).

    [11] P. Polynkin, C. Ament, J. V. Moloney. Self-focusing of ultraintense femtosecond optical vortices in air. Phys. Rev. Lett., 111, 023901(2013).

    [12] K. Bezuhanov, A. Dreischuh, G. G. Paulus. Vortices in femtosecond laser fields. Opt. Lett., 29, 1942-1944(2004).

    [13] R. Grunwald, T. Elsaesser, M. Bock. Spatio-temporal coherence mapping of few-cycle vortex pulses. Sci. Rep., 4, 7148(2014).

    [14] K. J. Moh, X.-C. Yuan, D. Y. Tang. Generation of femtosecond optical vortices using a single refractive optical element. Appl. Phys. Lett., 88, 091103(2006).

    [15] H. Tong, G. Xie, Z. Qiao. Generation of a mid-infrared femtosecond vortex beam from an optical parametric oscillator. Opt. Lett., 45, 989-992(2020).

    [16] Y. Zhao, L. Wang, W. Chen. Structured laser beams: toward 2-μm femtosecond laser vortices. Photonics Res., 9, 357-363(2021).

    [17] D. Lin, Y. Feng, Z. Ren. The generation of femtosecond optical vortex beams with megawatt powers directly from a fiber based Mamyshev oscillator. Nanophotonics, 11, 847-854(2021).

    [18] S. Wang, S. Zhang, H. Yang. Direct emission of chirality controllable femtosecond LG01 vortex beam. Appl. Phys. Lett., 112, 201110(2018).

    [19] A. Forbes. Structured light: tailored for purpose. Opt. Photonics News, 31, 24-31(2020).

    [20] A. Forbes. Structured light from lasers. Laser Photonics Rev., 13, 1900140(2019).

    [21] Y.-C. Lin, Y. Nabekawa, K. Midorikawa. Generation of intense femtosecond optical vortex pulses with blazed-phase grating in chirped-pulse amplification system of Ti:sapphire laser. Appl. Phys. B, 122, 280(2016).

    [22] Z. Chen, S. Zheng, X. Lu. Forty-five terawatt vortex ultrashort laser pulses from a chirped-pulse amplification system. High Power Laser Sci. Eng., 10, e32(2022).

    [23] K. Yamane, Y. Toda, R. Morita. Ultrashort optical-vortex pulse generation in few-cycle regime. Opt. Express, 20, 18986-18993(2012).

    [24] J. Qian, Y. Peng, Y. Li. Femtosecond mid-IR optical vortex laser based on optical parametric chirped pulse amplification. Photonics Res., 8, 421-425(2020).

    [25] D. J. Kim, J. W. Kim, W. A. Clarkson. High-power master-oscillator power-amplifier with optical vortex output. Appl. Phys. B, 117, 459-464(2014).

    [26] Y. Jung, Q. Kang, R. Sidharthan. Optical orbital angular momentum amplifier based on an air-hole erbium-doped fiber. J. Lightwave Technol., 35, 430-436(2017).

    [27] S. Wittek, R. B. Ramirez, J. A. Zacarias. Mode-selective amplification in a large mode area Yb-doped fiber using a photonic lantern. Opt. Lett., 41, 2157-2160(2016).

    [28] D. Lin, J. Carpenter, Y. Feng. Reconfigurable structured light generation in a multicore fibre amplifier. Nat. Commun., 11, 3986(2020).

    [29] J. Ma, P. Yuan, J. Wang. Spatiotemporal noise characterization for chirped-pulse amplification systems. Nat. Commun., 6, 6192(2015).

    [30] Y. Zhao, C. Zheng, Z. Huang. Twisted light in a single-crystal fiber: toward undistorted femtosecond vortex amplification. Laser Photonics Rev., 16, 2200503(2022).

    [31] D. Sangla, I. Martial, N. Aubry. High power laser operation with crystal fibers. Appl. Phys. B, 97, 263-273(2009).

    [32] J. Liu, J. Dong, Y. Wang. Tm:YAG single-crystal fiber laser. Opt. Lett., 46, 4454-4457(2021).

    [33] I. V. Basistiy, M. S. Soskin, M. V. Vasnetsov. Optical wavefront dislocations and their properties. Opt. Commun., 119, 604-612(1995).

    [34] J. Koerner, C. Vorholt, H. Liebetrau. Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20°C and 200°C and predictions on their influence on laser performance. J. Opt. Soc. Am. B, 29, 2493-2502(2012).

    [35] D. E. Zelmon, D. L. Small, R. Page. Refractive-index measurements of undoped yttrium aluminum garnet from 0.4 to 5.0 μm. Appl. Opt., 37, 4933-4935(1998).

    [36] B. Dannecker, J.-P. Negel, A. Loescher. Exploiting nonlinear spectral broadening in a 400 W Yb:YAG thin-disk multipass amplifier to achieve 2 mJ pulses with sub-150 fs duration. Opt. Commun., 429, 180-188(2018).

    [37] P. Genevet, N. Yu, F. Aieta. Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl. Phys. Lett., 100, 013101(2012).

    [38] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics, 1, 1-57(2009).

    [39] T. H. Lu, T. D. Huang, G. Y. Chiou. Kaleidoscope vortex lasers generated from astigmatic cavities with longitudinal-transverse coupling. Opt. Express, 26, 31464-31473(2018).

    [40] C. Wang, Y. Ren, T. Liu. Generating a new type of polygonal perfect optical vortex. Opt. Express, 29, 14126-14134(2021).

    [41] M. Piccardo, M. de Oliveira, A. Toma. Vortex laser arrays with topological charge control and self-healing of defects. Nat. Photonics, 16, 359-365(2022).

    Changsheng Zheng, Tianyi Du, Lei Zhu, Zhanxin Wang, Kangzhen Tian, Yongguang Zhao, Zhiyong Yang, Haohai Yu, Valentin Petrov. Direct amplification of femtosecond optical vortices in a single-crystal fiber[J]. Photonics Research, 2024, 12(1): 27
    Download Citation