• Chinese Journal of Lasers
  • Vol. 48, Issue 19, 1906003 (2021)
Hairuo Guo1、2, Kun Liu1、2、*, Junfeng Jiang1、2, Tianhua Xu1、2, Shuang Wang1、2, Zhenshi Sun1、2, Zichun Zhou1、2, Kang Xue1、2, Yuelang Huang1、2, and Tiegen Liu1、2
Author Affiliations
  • 1School of Precision Instrument & Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China;
  • 2Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/CJL202148.1906003 Cite this Article Set citation alerts
    Hairuo Guo, Kun Liu, Junfeng Jiang, Tianhua Xu, Shuang Wang, Zhenshi Sun, Zichun Zhou, Kang Xue, Yuelang Huang, Tiegen Liu. Optical Fiber High and Low Temperature Mechanical and Thermal Multi-Parameter Sensing System Based on Tunable Laser[J]. Chinese Journal of Lasers, 2021, 48(19): 1906003 Copy Citation Text show less
    References

    [1] Liu T G, Wang S, Jiang J F et al. Advances in optical fiber sensing technology for aviation and aerospace application[J]. Chinese Journal of Scientific Instrument, 35, 1681-1692(2014).

    [2] Gao S, Baker C, Chen L et al. Fabrication of multiple superimposed fiber Bragg gratings for multiple parameter sensing[J]. IEEE Sensors Letters, 4, 1-4(2020).

    [3] Oliveira R, Osório J H, Aristilde S et al. Simultaneous measurement of strain, temperature and refractive index based on multimode interference, fiber tapering and fiber Bragg gratings[J]. Measurement Science and Technology, 27, 075107(2016).

    [4] Kim D K, Lee S L, Choi S et al. Bend-insensitive simultaneous measurement of strain and temperature based on cascaded long-period fiber gratings inscribed on a polarization-maintaining photonic crystal fiber[J]. Journal of the Korean Physical Society, 76, 810-818(2020).

    [5] Shangguan C M, He W, Zhang W et al. Temperature and strain simultaneous measuring optical fiber sensor based on F-P cascade MZ[J]. Optical Communication Technology, 42, 16-19(2018).

    [6] Kersey A D, Berkoff T A, Morey W W. High-resolution fibre-grating based strain sensor with interferometric wavelength-shift detection[J]. Electronics Letters, 28, 236-238(1992).

    [7] Liang X, Liu T G, Liu K et al. Method of real-time calibration for tunable optical filter nonlinearity[J]. Chinese Journal of Lasers, 37, 1445-1449(2010).

    [8] Zhu W S, Wang J, Jiang J F et al. A high-precision wavelength demodulation method based on optical fiber Fabry-Perot tunable filter[J]. IEEE Access, 6, 45983-45989(2018).

    [9] Yu X K, Song N F, Song J M. A novel method for simultaneous measurement of temperature and strain based on EFPI/FBG[J]. Optics Communications, 459, 125020(2020).

    [10] Dai P, Zhou Y, Wang L L et al. Demodulation of the multi-peak fiber Bragg grating sensor based on partial wavelength scan[J]. Chinese Optics Letters, 18, 071201(2020).

    [11] Zhou W J, Zhou Y, Dong X Y et al. Fiber-optic curvature sensor based on cladding-mode Bragg grating excited by fiber multimode interferometer[J]. IEEE Photonics Journal, 4, 1051-1057(2012).

    [12] Yang R T, Zhu L Q, Xu T et al. High temperature and force measurements using a type II cascaded regenerated fiber Bragg grating (RFBG)[J]. Instrumentation Science & Technology, 47, 485-495(2019).

    [13] Xiong Y L, Ren N K, Wu M Z et al. Sensitivity-enhanced FBG demodulation system with multi-sideband filtering method[J]. Optics Communications, 382, 246-252(2017).

    [14] Li X G, Zhao Y, Cai L et al. Simultaneous measurement of RI and temperature based on a composite interferometer[J]. IEEE Photonics Technology Letters, 28, 1839-1842(2016).

    [15] Liu T G, Yu Z, Jiang J F et al. Advances of some critical technologies in discrete and distributed optical fiber sensing research[J]. Acta Physica Sinica, 66, 070705(2017).

    [16] Yin Z L. Research on the temperature sensitivity characteristic of fiber Bragg grating in low-temperature condition[D], 18-22(2014).

    [17] White G K. Thermal expansion of reference materials: copper, silica and silicon[J]. Journal of Physics D: Applied Physics, 6, 2070-2078(1973).

    [18] Waxler R M, Cleek G W. The effect of temperature and pressure on the refractive index of some oxide glasses[J]. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 77A, 755-763(1973).

    [19] Li B W, Liu Y G, Song X Y et al. Research on low temperature sensing characteristics of fiber Bragg grating[J]. Piezoelectrics & Acoustooptics, 42, 787-790(2020).

    [20] Zhao X D, Zhang X D, Hou C G et al. Research on fiber Bragg grating demodulation technology[J]. Electronic Measurement Technology, 40, 1-7(2017).

    [21] Qi Y F, Jia C, Tang L et al. Simultaneous measurement of temperature and humidity based on FBG-FP cavity[J]. Optics Communications, 452, 25-30(2019).

    [22] Li J H, Pei L, Wang J S et al. Temperature and magnetic field sensor based on photonic crystal fiber and surface plasmon resonance[J]. Chinese Journal of Lasers, 46, 0210002(2019).

    [23] Si J Z, Zhu R, Zhao S W et al. Fast laser wavelength locking system based on piezoelectric ceramics and fiber Bragg grating[J]. Chinese Journal of Lasers, 47, 1201002(2020).

    [24] He W, Zhang C, Tong X L et al. Wirelessly coupled fiber-Bragg-grating sensor for bushing-temperature monitoring[J]. Acta Optica Sinica, 39, 0906008(2019).

    [25] Tao Y, Zhang S X. Strain measurement of photoelectric composite cable based on fiber Bragg grating sensor[J]. Chinese Journal of Lasers, 47, 1010004(2020).

    [26] Her S C, Lin W N. Simultaneous measurement of temperature and mechanical strain using a fiber Bragg grating sensor[J]. Sensors, 20, 4223(2020).

    [27] Abdelsalam K, Ordouie E, Vazimali M G et al. Tunable dual-channel ultra-narrowband Bragg grating filter on thin-film lithium niobate[J]. Optics Letters, 46, 2730-2733(2021).

    Hairuo Guo, Kun Liu, Junfeng Jiang, Tianhua Xu, Shuang Wang, Zhenshi Sun, Zichun Zhou, Kang Xue, Yuelang Huang, Tiegen Liu. Optical Fiber High and Low Temperature Mechanical and Thermal Multi-Parameter Sensing System Based on Tunable Laser[J]. Chinese Journal of Lasers, 2021, 48(19): 1906003
    Download Citation