• Journal of Inorganic Materials
  • Vol. 39, Issue 5, 501 (2024)
Zongbei HE1, Fang CHEN1, Dianguang LIU2,*, Tongye LI1, and Qiang ZENG1
Author Affiliations
  • 11. Nuclear Fuel and Material Institute, Nuclear Power Institute of China, Chengdu 610213, China
  • 22. School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
  • show less
    DOI: 10.15541/jim20230492 Cite this Article
    Zongbei HE, Fang CHEN, Dianguang LIU, Tongye LI, Qiang ZENG. Sintering Behavior of Simulating Core FCM Fuel via Hot Oscillatory Pressing [J]. Journal of Inorganic Materials, 2024, 39(5): 501 Copy Citation Text show less
    References

    [1] H J KIM, E S KANG, Y W KIM et al. Effects of starting powder on microstructure and thermal conductivity of pressureless-sintered fully ceramic microencapsulated fuels. Journal of the European Ceramic Society, 783(2023).

    [2] H M KIM, Y W KIM, K Y LIM. Pressureless sintered silicon carbide matrix with a new quaternary additive for fully ceramic microencapsulated fuels. Journal of the European Ceramic Society, 3971(2019).

    [3] K ZHAO, P FENG, J TAN et al. A new route to fabricate high- performance binderless tungsten carbide: dynamic sinter forging. Journal of the American Ceramic Society, 3343(2023).

    [4] D LIU, J FAN, K ZHAO et al. Preparation of super-strong ZrO2 ceramics using dynamic hot forging. Journal of the European Ceramic Society, 733(2023).

    [5] L FAN, X SONG, P ZHAO et al. Super strong B4C ceramics prepared by dynamic sinter forging. Journal of the European Ceramic Society, 4209(2023).

    [6] J FAN, D LIU, K ZHAO et al. Densification kinetics and mechanism of zirconia ceramics via hot oscillating pressing. Open Ceramics, 100323(2023).

    [7] H HE, R ZHAO, H TIAN et al. Sintering behavior of alumina whisker reinforced zirconia ceramics in hot oscillatory pressing. Journal of Advanced Ceramics, 893(2022).

    [8] D LIU, X ZHANG, J FAN et al. Sintering behavior and mechanical properties of alumina ceramics exposed to oscillatory pressure at different sintering stages. Ceramics International, 23682(2021).

    [9] H HE, G SHAO, R ZHAO et al. Oscillatory pressure-assisted sinter forging for preparation of high-performance SiC whisker reinforced Al2O3 composites. Journal of Advanced Ceramics, 321(2023).

    [10] T ZHU, Z XIE. Ultrastrong tough zirconia ceramics by defects- engineering. Journal of the American Ceramic Society, 1617(2022).

    [11] K A TERRANI, J O KIGGANS, Y KATOH et al. Fabrication and characterization of fully ceramic microencapsulated fuels. Journal of Nuclear Materials, 268(2012).

    [12] L L SNEAD, K A TERRANI, Y KATOH et al. Stability of SiC-matrix microencapsulated fuel constituents at relevant LWR conditions. Journal of Nuclear Materials, 389(2014).

    [13] F CAO, X FAN, B LIU et al. Microstructure and thermal conductivity of fully ceramic microencapsulated fuel fabricated by spark plasma sintering. Journal of the American Ceramic Society, 4224(2018).

    [14] M COLOGNA, V TYRPEKL, M ERNSTBERGER et al. Sub-micrometre grained UO2 pellets consolidated from sol gel beads using spark plasma sintering (SPS). Ceramics International, 6619(2016).

    [15] J LI, J FAN, Y YUAN et al. Effect of oscillatory pressure on the sintering behavior of ZrO2 ceramic. Ceramics International, 13240(2020).

    [16] Y YUAN, J FAN, J LI et al. Oscillatory pressure sintering of Al2O3 ceramics. Ceramics International, 15670(2020).

    [17] B FENG, Y ZHOU, C PENG et al. Vibration assisted hot-press sintering of AlN ceramics. Journal of the American Ceramic Society, 1711(2015).

    [18] A GUBERNAT, L STOBIERSKI, P LABAJ. Microstructure and mechanical properties of silicon carbide pressureless sintered with oxide additives. Journal of the European Ceramic Society, 781(2007).

    [19] J FAN, Y YUAN, J LI et al. Densification and grain growth in oscillatory pressure sintering of alumina toughened zirconia ceramic composites. Journal of Alloys and Compounds, 155644(2020).

    [20] Y GAO, K GAO, L FAN et al. Oscillatory pressure sintering of WC-Fe-Ni cemented carbides. Ceramics International, 12727(2020).

    [21] K GAO, Y XU, G TANG et al. Oscillating pressure sintering of W-Ni-Fe refractory alloy. Journal of Alloys and Compounds, 789(2019).

    [22] Z XIE, S LI, L AN. A novel oscillatory pressure-assisted hot pressing for preparation of high performance ceramics. Journal of the American Ceramic Society, 1012(2014).

    [23] S LI, Z XIE, W XUE. Microstructure and mechanical properties of zirconia ceramics consolidated by a novel oscillatory pressure sintering. Ceramics International, 10281(2015).

    [24] K GAO, J ZHAO, D SUN et al. W-Ni-Fe refractory alloy sintered by hot oscillating pressure under different amplitudes. Advanced Engineering Materials, 2201899(2023).

    [25] H S PARK, R E RUDD, R M CAVALLO et al. Grain-size- independent plastic flow at ultrahigh pressures and strain rates. Physical Review Letters, 065502(2015).

    [26] D LIU, X DU, K ZHAO et al. Sintering behavior and mechanical properties of β-SiC ceramics under oscillatory pressure. Ceramics International, 1231(2024).

    [27] W LI, D LIU, K WANG et al. High entropy oxide ceramics (MgCoNiCuZn)O: flash sintering synthesis and properties. Journal of Inorganic Materials, 1289(2022).

    [28] M N RAHAMAN. Ceramics processing and sintering(2003).

    [29] D LIU, K WANG, K ZHAO et al. Creep behavior of zirconia ceramics under a strong DC field. Scripta Materialia, 114654(2022).

    [30] J M BIND, J V BIGGERS. Hot-pressing of silicon carbide with 1% boron carbide addition. Journal of the American Ceramic Society, 304(2010).

    [31] D A RAY, S KAUR, R A CUTLER et al. Effect of additives on the activation energy for sintering of silicon carbide. Journal of the American Ceramic Society, 1135(2010).

    [32] X YANG, D L JIANG, S H TAN et al. Densification kinetics and mechanism of β-SiC pressureless sintering. Journal of Inorganic Materials, 25(1992).

    [33] T HASE, H SUZUKI. Initial-stage sintering of β-SiC with concurrent boron and carbon additions. Journal of the Ceramic Association of Japan, 258(1980).

    [34] D C JANA, G SUNDARARAJAN, K CHATTOPADHYAY. Effective activation energy for the solid-state sintering of silicon carbide ceramics. Metallurgical and Materials Transactions A, 5599(2018).

    [35] A MALINGE, A COUPÉ, Y L PETITCORPS et al. Pressureless sintering of beta silicon carbide nanoparticles. Journal of the European Ceramic Society, 4393(2012).

    Zongbei HE, Fang CHEN, Dianguang LIU, Tongye LI, Qiang ZENG. Sintering Behavior of Simulating Core FCM Fuel via Hot Oscillatory Pressing [J]. Journal of Inorganic Materials, 2024, 39(5): 501
    Download Citation