• Acta Optica Sinica
  • Vol. 40, Issue 15, 1511001 (2020)
Min Yang1、*, Wenbin Xu1, Yuze Tian2、**, Zhenyuan Sun3, and Xianzhong Sun1
Author Affiliations
  • 1Science and Technology on Optical Radiation Laboratory, Beijing 100854, China
  • 2Beijing Electro-Mechanical Engineering Institute, Beijing 100074, China
  • 3Beijing Space Information Relay and Transmission Technology Research Center, Beijing 100094, China
  • show less
    DOI: 10.3788/AOS202040.1511001 Cite this Article Set citation alerts
    Min Yang, Wenbin Xu, Yuze Tian, Zhenyuan Sun, Xianzhong Sun. Time-Sharing Infrared Polarization Imaging System for Moving Target Detection[J]. Acta Optica Sinica, 2020, 40(15): 1511001 Copy Citation Text show less
    Schematic of measuring principle of light wave polarization state
    Fig. 1. Schematic of measuring principle of light wave polarization state
    Schematic of polarizer angle change during each rotation period
    Fig. 2. Schematic of polarizer angle change during each rotation period
    Process of solving infrared polarized images by iterative sorting method
    Fig. 3. Process of solving infrared polarized images by iterative sorting method
    Typical infrared polarized cold reflection phenomenon
    Fig. 4. Typical infrared polarized cold reflection phenomenon
    Infrared DOP and infrared AOP images with different rotation periods. (a) (b) (c) Infrared polarization degree images with rotation periods of 400, 600, 900 r/min; (d) (e) (f) corresponding infrared polarization angle images
    Fig. 5. Infrared DOP and infrared AOP images with different rotation periods. (a) (b) (c) Infrared polarization degree images with rotation periods of 400, 600, 900 r/min; (d) (e) (f) corresponding infrared polarization angle images
    Infrared DOP and infrared AOP images with different integration times. (a) (b) (c) Infrared polarization degree images with integration times of 0.5, 1.0, and 1.5 ms; (d) (e) (f) corresponding infrared polarization angle image
    Fig. 6. Infrared DOP and infrared AOP images with different integration times. (a) (b) (c) Infrared polarization degree images with integration times of 0.5, 1.0, and 1.5 ms; (d) (e) (f) corresponding infrared polarization angle image
    Cold reflection effect deduction processing results. (a) Infrared intensity images with different polarization directions; (b) cold reflection spot reference images; (c) corrected infrared intensity images
    Fig. 7. Cold reflection effect deduction processing results. (a) Infrared intensity images with different polarization directions; (b) cold reflection spot reference images; (c) corrected infrared intensity images
    polarization polarization images of airbus. (a) Intensity image; (b) DOP image; (c) AOP image
    Fig. 8. polarization polarization images of airbus. (a) Intensity image; (b) DOP image; (c) AOP image
    Rotationperiod /(r·min-1)Region 1Region 2
    DOPAOPDOPAOP
    4000.02670.47830.01990.4097
    6000.02640.47810.02020.4162
    9000.02650.47840.01970.4156
    Table 1. Comparison of infrared DOP and infrared AOP values in different regions with different rotation periods
    Integration time /msRegion 1Region 2
    DOPAOPDOPAOP
    0.50.0234-0.25350.0165-0.3129
    1.00.02510.44620.01720.4848
    1.50.02640.47810.02020.4162
    Table 2. Comparison of infrared DOP and infrared AOP values in different regions with different integration time
    TypeIntensityDOPAOP
    Contrast0.01820.38310.3405
    Table 3. Airbus infrared image contrast results
    Min Yang, Wenbin Xu, Yuze Tian, Zhenyuan Sun, Xianzhong Sun. Time-Sharing Infrared Polarization Imaging System for Moving Target Detection[J]. Acta Optica Sinica, 2020, 40(15): 1511001
    Download Citation