• Photonic Sensors
  • Vol. 7, Issue 4, 357 (2017)
Trung-Thanh LE*
Author Affiliations
  • International School (VNU-IS), Vietnam National University (VNU), Hanoi, Vietnam
  • show less
    DOI: 10.1007/s13320-017-0441-1 Cite this Article
    Trung-Thanh LE. Two-Channel Highly Sensitive Sensors Based on 4 × 4 Multimode Interference Couplers[J]. Photonic Sensors, 2017, 7(4): 357 Copy Citation Text show less
    References

    [1] V. M. N. Passaro, F. Dell'Olio, B. Casamassima, and F. D. Leonardis, “Guided-wave optical biosensors,” Sensors, 2007, 7(4): 508–536.

    [2] C. Ciminelli, C. M. Campanella, F. Dell'Olio, C. E. Campanella, and M. N. Armenise, “Label-free optical resonant sensors for biochemical applications,” Progress in Quantum Electronics, 2013, 37(2): 51–107.

    [3] W. Wang, Advances in chemical sensors. Rijeka, Croatia: InTech, 2012: 1–346.

    [4] L. Shi, Y. H. Xu, W. Tan, and X. F. Chen, “Simulation of optical microfiber loop resonators for ambient refractive index sensing,” Sensors, 2007, 7(5): 689–696.

    [5] H. X. Yi, D. S. Citrin, and Z. P. Zhou, “Highly sensitive silicon microring sensor with sharp asymmetrical resonance,” Optics Express, 2010, 18(13): 2967–2972.

    [6] Z. X. Xia, Y. Chen, and Z. P. Zhou, “Dual waveguide coupled microring resonator sensor based on intensity detection,” IEEE Journal of Quantum Electronics, 2008, 44(1–2): 100–107.

    [7] V. M. N. Passaro, F. Dell'Olio, and F. De Leonardis, “Ammonia optical sensing by microring resonators,” Sensors, 2007, 7(11): 2741–2749.

    [8] C. Le. Arce, K. De Vos, T. Claes, K. Komorowska, D. Van Thourhout, and P. Bienstman, “Silicon-on-insulator microring resonator sensor integrated on an optical fiber facet,” IEEE Photonics Technology Letters, 2011, 23(13): 890–892.

    [9] T. T. Le, “Realization of a multichannel chemical and biological sensor using 6 × 6 multimode interference structures,” International Journal of Information and Electronics Engineering, Singapore, 2011, 2: 240–244.

    [10] K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, et al., “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics Journal, 2009, 1(4): 225–235.

    [11] D. X. Dai, “Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators,” Optics Express, 2009, 17(26): 23817–23822.

    [12] Y. Chen, Z. Y. Li, H. X. Yi, Z. P. Zhou, and J. Yu, “Microring resonator for glucose sensing applications,” Frontiers of Optoelectronics in China, 2009, 2(3): 304–307.

    [13] G. D. Kim, G. S. Son, H. S. Lee, K. D. Kim, and S. S. Lee, “Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers,” Optics Communications, 2008, 281(18): 4644–4647.

    [14] C. Errando-Herranz, F. Saharil, A. M. Romero, N. Sandstrom, R. Z. Shafagh, W. Van Der Wijingaart, et al., “Integration of microfluidics with grating coupled silicon photonic sensors by one-step combined photopatterning and molding of OSTE,” Optics Express, 2013, 21(18): 21293–21298.

    [15] A. F. Gavela, D. G. García, J. C. Ramirez, and L. M. Lechuga, “Last advances in silicon-based optical biosensors,” Sensors, 2016, 16(3): 1–15.

    [16] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” Journal of Lightwave Technology, 1995, 13(4): 615–627.

    [17] M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N × N multimode interference couplers including phase relations,” Applied Optics, 1994, 33(18): 3905–3911.

    [18] T. T. Le, Multimode interference structures for photonic signal processing. Saarbrücken, Germany: LAP LAMBERT Academic Publishing, 2010: 1–328.

    [19] J. M. Heaton and R. M. Jenkins, “General matrix theory of self-imaging in multimode interference (MMI) couplers,” IEEE Photonics Technology Letters, 1999, 11(2): 212–214.

    [20] T. T. Le and L. Cahill, “Generation of two Fano resonances using 4 × 4 multimode interference structures on silicon waveguides,” Optics Communications, 2013, 301–302: 100–105.

    [21] W. M. J. Green, R. K. Lee, G. DeRose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control,” Optics Express, 2005, 13(5): 1651–1659.

    [22] T. T. Le and L. W. Cahill, “The design of 4 × 4 multimode interference coupler based microring resonators on an SOI platform,” Journal of Telecommunications and Information Technology, 2009: 98–102.

    [23] D. T. Le, M. C. Nguyen, and T. T. Le, “Fast and slow light enhancement using cascaded microring resonators with the Sagnac reflector,” Optik, 2017, 131: 292–301.

    [24] X. P. Liang, Q. Z. Zhang, and H. B. Jiang, “Quantitative reconstruction of refractive index distribution and imaging of glucose concentration by using diffusing light,” Applied Optics, 2006, 45(32): 8360–8365.

    [25] C. Ciminelli, F. Dell'Olio, D. Conteduca, C. M. Campanella, and M. N. Armenise, “High performance SOI microring resonator for biochemical sensing,” Optics & Laser Technology, 2014, 59: 60–67.

    [26] O. A. Marsh, Y. L. Xiong, and W. N. Ye, “Slot waveguide ring-assisted Mach-Zehnder interferometer for sensing applications,” IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(2): 440–443.

    [27] J. J. Hu, X. C. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” Journal of the Optical Society of America B-Optical Physics, 2009, 26(5): 1032–1041.

    [28] Y. Chen, Y. L. Ding, and Z. Y. Li, “Ethanol Sensor Based on Microring Resonator,” Advanced Materials Research, 2013: 655–657.

    [29] S. Manipatruni, R. K. Dokania, B. Schmidt, N. Sherwood Droz, C. B. Poitras, A. B. Apsel, et al., “Wide temperature range operation of micrometer-scale silicon electro-optic modulators,” Optics Letters, 2008, 33(19): 2185–2187.

    [30] M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Optics Letters, 2007, 32(13): 1800–1802.

    [31] K. B. Gylfason, A. M. Romero, and H. Sohlstr m, “Reducing the temperature sensitivity of SOI waveguide-based biosensors,” SPIE, 2012: 84310F–1–84310F–15.

    [32] C. T. Wang, C. Y. Wang, J. H. Yu, I. T. Kou, C. W. Tseng, H. C. Jau, et al., “Highly sensitive optical temperature sensor based on a SiN micro-ring resonator with liquid crystal cladding,” Optics Express, 2016, 24(2): 1002–1007.

    [33] F. Qiu, F. Yu, A. M. Spring, and S. Yokoyama, “Athermal silicon nitride ring resonator by photobleaching of disperse red 1-doped poly(methyl methacrylate) polymer,” Optics Letters, 2012, 37(19): 4086–4088.

    [34] X. Y. Han, Y. C. Shao, X. N. Han, Z. L. Lu, Z. L. Wu, J. Teng, et al., “Athermal optical waveguide microring biosensor with intensity interrogation,” Optics Communications, 2015, 356: 41–48.

    [35] B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Optics Express, 2010, 18(4): 3487–3493.

    [36] S. T. Fard, V. Donzella, S. A. Schmidt, J. Flueckiger, S. M. Grist, P. Talebi Fard, et al., “Performance of ultra-thin SOI-based resonators for sensing applications,” Optics Express, 2014, 22(12): 14166–14179.

    Trung-Thanh LE. Two-Channel Highly Sensitive Sensors Based on 4 × 4 Multimode Interference Couplers[J]. Photonic Sensors, 2017, 7(4): 357
    Download Citation