• Journal of Semiconductors
  • Vol. 40, Issue 7, 070301 (2019)
Disheng Chen1、2 and Weibo Gao1、2
Author Affiliations
  • 1Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
  • 2The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
  • show less
    DOI: 10.1088/1674-4926/40/7/070301 Cite this Article
    Disheng Chen, Weibo Gao. Quantum light sources from semiconductor[J]. Journal of Semiconductors, 2019, 40(7): 070301 Copy Citation Text show less
    References

    [1] A V Kuhlmann, J H Prechtel, J Houel et al. Transform-limited single photons from a single quantum dot. Nat Commun, 6, 8204(2015).

    [2] P Michler, A Kiraz, C Becher et al. A quantum dot single-photon turnstile device. Science, 290, 2282(2000).

    [3] C Santori, M Pelton, G Solomon et al. Triggered single photons from a quantum dot. Phys Rev Lett, 86, 1502(2001).

    [4] X Ding, Y He, Z C Duan et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys Rev Lett, 116, 020401(2016).

    [5] N Somaschi, V Giesz, L D Santis et al. Near-optimal single-photon sources in the solid state. Nat Photon, 10, 340(2016).

    [6] A K Nowak, S L Portalupi, V Giesz et al. Deterministic and electrically tunable bright single-photon source. Nat Commun, 5, 3240(2014).

    [7] T Heindel, C Schneider, M Lermer et al. Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl Phys Lett, 96, 011107(2010).

    [8] J Nilsson, R M Stevenson, K H A Chan et al. Quantum teleportation using a light-emitting diode. Nat Photon, 7, 311(2013).

    [9] M Müller, S Bounouar, K D Jöns et al. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat Photon, 8, 224(2014).

    [10] R Keil, M Zopf, Y Chen et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat Commun, 8, 15501(2017).

    [11] D Huber, M Reindl, Y Huo et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat Commun, 8, 15506(2017).

    [12] Y Chen, J Zhang, M Zopf et al. Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots. Nat Commun, 7, 10387(2016).

    [13] D Huber, M Reindl, S F Covre da Silva et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand. Phys Rev Lett, 121, 033902(2018).

    [14] H Wang, H Hu, T H Chung et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys Rev Lett, 122, 113602(2019).

    [15] Y Chen, M Zopf, R Keil et al. Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna. Nat Commun, 9, 2994(2018).

    [16]

    [17] P Tamarat, T Gaebel, J R Rabeau et al. Stark shift control of single optical centers in diamond. Phys Rev Lett, 97, 083002(2006).

    [18] K M C Fu, C Santori, P E Barclay et al. Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond. Phys Rev Lett, 103, 256404(2009).

    [19] F Jelezko, I Popa, A Gruber et al. Single spin states in a defect center resolved by optical spectroscopy. Appl Phys Lett, 81, 2160(2002).

    [20] M W Doherty, N B Manson, P Delaney et al. The nitrogen-vacancy colour centre in diamond. Phys Rep, 528, 1(2013).

    [21] C Hepp, T Müller, V Waselowski et al. Electronic structure of the silicon vacancy color center in diamond. Phys Rev Lett, 112, 036405(2014).

    [22] L J Rogers, K D Jahnke, T Teraji et al. Multiple intrinsically identical single-photon emitters in the solid state. Nat Commun, 5, 4739(2014).

    [23] A Sipahigil, K D Jahnke, L J Rogers et al. Indistinguishable photons from separated silicon-vacancy centers in diamond. Phys Rev Lett, 113, 113602(2014).

    [24] E Neu, M Fischer, S Gsell et al. Fluorescence and polarization spectroscopy of single silicon vacancy centers in heteroepitaxial nanodiamonds on iridium. Phys Rev B, 84, 205211(2011).

    [25] A Dietrich, K D Jahnke, J M Binder et al. Isotopically varying spectral features of silicon-vacancy in diamond. New J Phys, 16, 113019(2014).

    [26] E Neu, M Agio, C Becher. Photophysics of single silicon vacancy centers in diamond: implications for single photon emission. Opt Express, 20, 19956(2012).

    [27] L J Rogers, K D Jahnke, M W Doherty et al. Electronic structure of the negatively charged silicon-vacancy center in diamond. Phys Rev B, 89, 235101(2014).

    [28] J L Zhang, H Ishiwata, T M Babinec et al. Hybrid group IV nanophotonic structures incorporating diamond silicon-vacancy color centers. Nano Lett, 16, 212(2016).

    [29] A Sipahigil, R E Evans, D D Sukachev et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science, 354, 847(2016).

    [30] T Schroder, M E Trusheim, M Walsh et al. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures. Nat Commun, 8, 15376(2017).

    [31] J Riedrich-Möller, C Arend, C Pauly et al. Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond. Nano Lett, 14, 5281(2014).

    [32]

    [33] Y Zhou, Z Wang, A Rasmita et al. Room temperature solid-state quantum emitters in the telecom range. Sci Adv, 4, eaar358(2018).

    [34] A M Berhane, K Y Jeong, Z Bodrog et al. Bright room-temperature single-photon emission from defects in gallium nitride. Adv Mater, 29, 1605092(2017).

    [35] A M Berhane, K Y Jeong, C Bradac et al. Photophysics of GaN single-photon emitters in the visible spectral range. Phys Rev B, 97, 165202(2018).

    [36]

    [37] S Castelletto, B C Johnson, V Ivády et al. A silicon carbide room-temperature single-photon source. Nat Mater, 13, 151(2014).

    [38] M Widmann, S Y Lee, T Rendler et al. Coherent control of single spins in silicon carbide at room temperature. Nat Mater, 14, 164(2015).

    [39] S Castelletto, B C Johnson, A Boretti. Quantum effects in silicon carbide hold promise for novel integrated devices and sensors. Adv Opt Mater, 1, 609(2013).

    [40] A Lohrmann, B C Johnson, J C McCallum et al. A review on single photon sources in silicon carbide. Rep Prog Phys, 80, 034502(2017).

    [41] C Chakraborty, L Kinnischtzke, K M Goodfellow et al. Voltage-controlled quantum light from an atomically thin semiconductor. Nat Nano, 10, 507(2015).

    [42] Y M He, G Clark, J R Schaibley et al. Single quantum emitters in monolayer semiconductors. Nat Nanotechnol, 10, 497(2015).

    [43] M Koperski, K Nogajewski, A Arora et al. Single photon emitters in exfoliated WSe2 structures. Nat Nanotechnol, 10, 503(2015).

    [44] A Srivastava, M Sidler, A V Allain et al. Optically active quantum dots in monolayer WSe2. Nat Nanotechnol, 10, 491(2015).

    [45] P Tonndorf, R Schmidt, R Schneider et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica, 2, 347(2015).

    [46] A Branny, G Wang, S Kumar et al. Discrete quantum dot like emitters in monolayer MoSe2: Spatial mapping, magneto-optics, and charge tuning. Appl Phys Lett, 108, 142101(2016).

    [47] C Chakraborty, K M Goodfellow, A N Vamivakas. Localized emission from defects in MoSe2 layers. Opt Mater Express, 6, 2081(2016).

    [48] C Palacios-Berraquero, D M Kara, A R P Montblanch et al. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat Commun, 8, 15093(2017).

    [49] P Tonndorf, S Schwarz, J Kern et al. Single-photon emitters in GaSe. 2D Mater, 4, 021010(2017).

    [50] M Toth, I Aharonovich. Single photon sources in atomically thin materials. Ann Rev Phys Chem, 70, 123(2019).

    [51] T T Tran, K Bray, M J Ford et al. Quantum emission from hexagonal boron nitride monolayers. Nat Nanotechnol, 11, 37(2016).

    [52] T T Tran, M Kianinia, M Nguyen et al. Resonant excitation of quantum emitters in hexagonal boron nitride. ACS Photonics, 5, 295(2018).

    [53] G Cassabois, P Valvin, B Gil. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat Photonics, 10, 262(2016).

    [54] L J Martinez, T Pelini, V Waselowski et al. Efficient single photon emission from a high-purity hexagonal boron nitride crystal. Phys Rev B, 94, 121405(2016).

    [55] T T Tran, C Elbadawi, D Totonjian et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano, 10, 7331(2016).

    [56] A Dietrich, M Bürk, E S Steiger et al. Observation of Fourier transform limited lines in hexagonal boron nitride. Phys Rev B, 98, 081414(2018).

    [57]

    [58] S A Tawfik, S Ali, M Fronzi et al. First-principles investigation of quantum emission from hBN defects. Nanoscale, 9, 13575(2017).

    [59] J R Reimers, A Sajid, R Kobayashi et al. Understanding and calibrating density-functional-theory calculations describing the energy and spectroscopy of defect sites in hexagonal boron nitride. J Chem Theory Comput, 14, 1602(2018).

    [60] M Abdi, J P Chou, A Gali et al. Color centers in hexagonal boron nitride monolayers: a group theory and ab initio analysis. ACS Photonics, 5, 1967(2018).

    [61] S Gupta, J H Yang, B I Yakobson. Two-level quantum systems in two-dimensional materials for single photon emission. Nano Lett, 19, 408(2019).

    [62] X He, H Htoon, S K Doorn et al. Carbon nanotubes as emerging quantum-light sources. Nat Mater, 17, 663(2018).

    [63] S Ghosh, S M Bachilo, R A Simonette et al. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science, 330, 1656(2010).

    [64] Y Piao, B Meany, L R Powell et al. Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. Nat Chem, 5, 840(2013).

    [65] N F Hartmann, S E Yalcin, L Adamska et al. Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes. Nanoscale, 7, 20521(2015).

    [66] X He, N F Hartmann, X Ma et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat Photonics, 11, 577(2017).

    [67] X Ma, N F Hartmann, J K S Baldwin et al. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat Nanotechnol, 10, 671(2015).

    [68] F Pyatkov, V Fütterling, S Khasminskaya et al. Cavity-enhanced light emission from electrically driven carbon nanotubes. Nat Photonics, 10, 420(2016).

    [69] S Khasminskaya, F Pyatkov, K Słowik et al. Fully integrated quantum photonic circuit with an electrically driven light source. Nat Photonics, 10, 727(2016).

    [70] A Graf, M Held, Y Zakharko et al. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. Nat Mater, 16, 911(2017).

    [71] I Sarpkaya, Z Zhang, W Walden-Newman et al. Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes. Nat Commun, 4, 2152(2013).

    Disheng Chen, Weibo Gao. Quantum light sources from semiconductor[J]. Journal of Semiconductors, 2019, 40(7): 070301
    Download Citation