[1] Ke X Z, Wang S. Evolution of the intensity of partially coherent airy beam in atmospheric turbulence[J]. Acta Photonica Sinica, 2017, 46(7): 0701001.
[2] Lukin V P, Pokasov V V. Optical wave phase fluctuations[J]. App. Opt, 1981, 20(1):421-135.
[3] Kumar R S P, Khan M A J, Nitesh G. Performance analysis of a free space optics link with multiple transmitters/receivers[J]. International Journal for Scientific Research & Development, 2012, 13(3): 254-258.
[5] Su C X, Song P, Meng C, et al. The pulse broadening ranging method of wireless ultraviolet optical communication[J]. Journal of Xi'an Polytechnic University, 2019, 33(2): 161-167.
[6] Liao T H, Liu W, Gao Q. Turbulent effects of laser beams of different shapes in the atmosphere[J]. Infrared and Laser Engineering, 2015(S1): 41-45.
[7] Svihlík J, Krbcova Z, Tran Q V, et al. Stochastic and analytic modeling of atmospheric turbulence in image processing[J]. Proceedings of SPIE - The International Society for Optical Engineering. Applications of Digital Image Processing XLI, 2018: 10752.
[8] Torrieri D J. Principles of Spread-Spectrum Communication Systems[M]. 3rd ed. Cham: Springer, 2015.
[9] Wang Y, Wang D L, Ma J. On the performance of coherent OFDM systems in free-space optical communications[J]. IEEE Photonics Journal, 2015, 7(4): 7902410.
[11] Wu P F, Jia L Y. Experimental analysis of atmospheric coherence length measurement in Xi'an area[J]. Laser & Optoelectronics Progress, 2019, 57(9): 090101.
[12] Singhal P, Gupta P, Rana P. Basic concept of free space optics communication (FSO): an overview[C]//Proceedings of 2015 International Conference on Communications and Signal Processing (ICCSP), Melmaruvathur, 2015: 0439-0442.
[13] Khare S, Sahayam N. Analysis of free space optical communication system for different atmospheric conditions & modulation techniques[J]. International Journal of Modern Engineering Research (IJMER), 2012, 2(6): 4149-4152.