• Laser & Optoelectronics Progress
  • Vol. 57, Issue 15, 153003 (2020)
Liang Liang*, Jianhua Zhang, and Zhiqiang Hu
Author Affiliations
  • School of Mechanical & Electrical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221018, China
  • show less
    DOI: 10.3788/LOP57.153003 Cite this Article Set citation alerts
    Liang Liang, Jianhua Zhang, Zhiqiang Hu. Quantitative Analysis of Concentration of Dense Phase Pulverized Coal Using Terahertz Time-Domain Spectroscopy[J]. Laser & Optoelectronics Progress, 2020, 57(15): 153003 Copy Citation Text show less
    References

    [1] Zou Z Q, Sun X X, Qiu J H et al. Effects of solid/gas ratio on combustion characterization of BF pulverized coal[J]. Reseach on Iron and Steel, 27, 11-14(1999).

    [2] Pu W H. Research on dense phase pneumatic conveying and numerical simulation of pulverized coal at high pressure[D]. Nanjing: Southeast University(2009).

    [3] Shang Q Y. Current status and development trend of pulverized coal industrial boilers in China[J]. Coal Science and Technology, 44, 201-206(2016).

    [4] Cui X G, Chen H W, Li Y H. Research on measure method of pulverized coal[J]. Chinese Journal of Scientific Instrument, 24, 525-527(2003).

    [5] Xu R L. Light scattering: a review of particle characterization applications[J]. Particuology, 18, 11-21(2015).

    [6] Povey M J W. Ultrasound particle sizing: a review[J]. Particuology, 11, 135-147(2013).

    [7] Ferguson B, Zhang X C. Materials for terahertz science and technology[J]. Nature Materials, 1, 26-33(2002).

    [8] Liu L Y, Chang T H, Li K et al. Spectral analysis and quantitative detection of baicalin based on terahertz radiation[J]. Chinese Journal of Lasers, 47, 0314001(2020).

    [9] Araki M, Tabata Y, Shimizu N et al. Terahertz spectroscopy of CO and NO: the first step toward temperature and concentration detection for combustion gases in fire environments[J]. Journal of Molecular Spectroscopy, 361, 34-39(2019).

    [10] Wang Y H, Sun Z C, Xu D G et al. Detection of cerebral ischemia based on terahertz time-domain spectroscopy[J]. Acta Optica Sinica, 40, 0430001(2020).

    [11] Sinyukov A, Zorych I, Michalopoulou Z H et al. Detection of explosives by terahertz synthetic aperture imaging: focusing and spectral classification[J]. Comptes Rendus Physique, 9, 248-261(2008).

    [12] Dorney T D, Baraniuk R G, Mittleman D M. Material parameter estimation with terahertz time-domain spectroscopy[J]. Journal of the Optical Society of America A, 18, 1562-1571(2001).

    [13] Duvillaret L, Garet F, Coutaz J L. A reliable method for extraction of material parameters in terahertz time-domain spectroscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2, 739-746(1996).

    [14] Prieto N, Oliveri P, Leardi R et al. Application of a GA-PLS strategy for variable reduction of electronic tongue signals[J]. Sensors and Actuators B: Chemical, 183, 52-57(2013).

    [15] Ma Y H, Wang Q, Li L Y. PLS model investigation of thiabendazole based on THz spectrum[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 117, 7-14(2013).

    Liang Liang, Jianhua Zhang, Zhiqiang Hu. Quantitative Analysis of Concentration of Dense Phase Pulverized Coal Using Terahertz Time-Domain Spectroscopy[J]. Laser & Optoelectronics Progress, 2020, 57(15): 153003
    Download Citation