• Journal of Innovative Optical Health Sciences
  • Vol. 2, Issue 4, 407 (2009)
RALPH S. DACOSTA1、*, YING TANG2, TUULA KALLIOMAKI3, RAYMOND M. REILLY4, ROBERT WEERSINK5, ALISHA R. ELFORD6, NORMAN E. MARCON7, and BRIAN C. WILSON3
Author Affiliations
  • 1Division of Biophysics and Bioimaging, Ontario Cancer Institute 610 University of Toronto, Toronto, Ontario, M5G 2M9, Canada
  • 2NIH/NCI, Radiation Oncology Branch Bethesda, MD, USA
  • 3Department of Medical Biophysics, University of Toronto Princess Margaret Hospital/Ontario Cancer Institute University Health Network, Toronto, Ontario, Canada
  • 4Division of Clinical Investigation and Human Physiology Toronto General Hospital Research Institute, and University of Toronto Leslie Dan Faculty of Pharmacy Toronto, Ontario, Canada
  • 5Laboratory for Applied Biophotonics University Health Network, Toronto, Ontario, Canada
  • 6Campbell Family Institute for Breast Cancer Research University Health Network/Ontario Cancer Institute Department of Medical Biophysics and Immunology Toronto, Ontario, Canada
  • 7St. Michael’s Hospital Center for Therapeutic Endoscopy and Endoscopic Oncology Toronto, Ontario, Canada
  • show less
    DOI: Cite this Article
    RALPH S. DACOSTA, YING TANG, TUULA KALLIOMAKI, RAYMOND M. REILLY, ROBERT WEERSINK, ALISHA R. ELFORD, NORMAN E. MARCON, BRIAN C. WILSON. IN VIVO NEAR-INFRARED FLUORESCENCE IMAGING OF HUMAN COLON ADENOCARCINOMA BY SPECIFIC IMMUNOTARGETING OF A TUMOR-ASSOCIATED MUCIN[J]. Journal of Innovative Optical Health Sciences, 2009, 2(4): 407 Copy Citation Text show less
    References

    [1] S. Bensen, L. A. Mott, B. Dain, R. Rothstein, J. Baron, “The colonoscopic miss rate and true one-year recurrence of colorectal neoplastic polyps. Polyp Prevention Study Group,” Am. J. Gastroenterol. 94(1), 194–199 (1999).

    [2] J. C. van Rijn, J. B. Reitsma, J. Stoker, P. M. Bossuyt, S. J. van Deventer, E. Dekker, “Polypmiss rate determined by tandem colonoscopy: A systematic review,” Am. J. Gastroenterol. 101(2), 343–350 (2006).

    [3] R. S. DaCosta, B. C.Wilson, N. E.Marcon, “Optical techniques for the endoscopic detection of dysplastic colonic lesions,” Curr. Opin. Gastroenterol. 21(1), 70–79 (2005).

    [4] R. S. DaCosta, B. C. Wilson, N. E. Marcon, “New optical technologies for earlier endoscopic diagnosis of premalignant gastrointestinal lesions,” J. Gastroenterol. Hepatol. 17, S85–104 (2002).

    [5] J. Haringsma, G. N. Tytgat, H. Yano, H. Iishi, M. Tatsuta, T. Ogihara, H.Watanabe, N. Sato, N. Marcon, B. C. Wilson, R. W. Cline, “Autofluorescence endoscopy: Feasibility of detection of GI neoplasms unapparent to white light endoscopy with an evolving technology,” Gastrointest. Endosc. 53(6), 642– 650 (2001).

    [6] M. Kara, R. S. DaCosta, B. C. Wilson, N. E. Marcon, J. Bergman, “Autofluorescence-based detection of early neoplasia in patients with Barrett’s esophagus,” Dig. Dis. 22(2), 134–141 (2004).

    [7] S. Brand, T. D. Wang, K. T. Schomacker, J. M. Poneros, G. Y. Lauwers, C. C. Compton, M. C. Pedrosa, N. S. Nishioka, “Detection of high-grade dysplasia in Barrett’s esophagus by spectroscopy measurement of 5-aminolevulinic acid-induced protoporphyrin IX fluorescence,” Gastrointest. Endosc. 56(4), 479–487 (2002).

    [8] B. Mayinger, S. Neidhardt, H. Reh, P. Martus, E. G. Hahn, “Fluorescence induced with 5-aminolevulinic acid for the endoscopic detection and follow-up of esophageal lesions,” Gastrointest. Endosc. 54(5), 572–578 (2001).

    [9] H. Messmann, “5-aminolevulinic acid-induced protoporphyrin IX for the detection of gastrointestinal dysplasia,” Gastrointest. Endosc. Clin. N. Am. 10(3), 497–512 (2000).

    [10] L. Gossner, M. Stolte, R. Sroka, K. Rick, A. May, E. G. Hahn, C. Ell, “Photodynamic ablation of high-grade dysplasia and early cancer in Barrett’s esophagus by means of 5-aminolevulinic acid,” Gastroenterology 114(3), 448–455 (1998).

    [11] W. C. Tan, C. Fulljames, N. Stone, A. J. Dix, N. Shepherd, D. J. Roberts, S. B. Brown, N. Krasner, H. Barr, “Photodynamic therapy using 5-aminolaevulinic acid for oesophageal adenocarcinoma associated with Barrett’s metaplasia,” J. Photochem. Photobiol. B. 53(1–3), 75–80 (1999).

    [12] R. Ackroyd, N. J. Brown, M. F. Davis, T. J. Stephenson, C. J. Stoddard, M. W. Reed, “Aminolevulinic acid-induced photodynamic therapy: Safe and effective ablation of dysplasia in Barrett’s esophagus,” Dis. Esophagus. 13(1), 18–22 (2000).

    [13] H. Messmann, R. Knuchel, W. Baumler, A. Holstege, J. Scholmerich, “Endoscopic fluorescence detection of dysplasia in patients with Barrett’s esophagus, ulcerative colitis, or adenomatous polyps after 5-aminolevulinic acid-induced protoporphyrin IX sensitization,” Gastrointest. Endosc. 49(1), 97– 101 (1999).

    [14] S. B. Ho, Y. S. Kim, “Carbohydrate antigens on cancer-associated mucin-like molecules,” Semin. Cancer Biol. 2(6), 389–400 (1991).

    [15] Y. S. Kim, “Altered glycosylation of mucin glycoproteins in colonic neoplasia,” J. Cell. Biochem. 16, 91–96 (1992).

    [16] N. Aksoy, O. F. Akinci, “Mucin macromolecules in normal, adenomatous, and carcinomatous colon: Evidence for the neotransformation,” Macromol. Biosci. 4(5), 483–496 (2004).

    [17] S. E. Baldus, F. G. Hanisch, “Biochemistry and pathological importance of mucin-associated antigens in gastrointestinal neoplasia,” Adv. Cancer Res. 79, 201–248 (2000).

    [18] C. R. Boland, C. K. Montgomery, Y. S. Kim, “Alterations in human colonic mucin occurring with cellular differentiation and malignant transformation,” Proc. Natl. Acad. Sci. U.S.A. 79(6), 2051–2055 (1982).

    [19] J. C. Byrd, R. S. Bresalier, “Mucins and mucin binding proteins in colorectal cancer,” Cancer Metastasis Rev. 23(1–2), 77–99 (2004).

    [20] S. B. Ho, S. L. Ewing, C. K. Montgomery, Y. S. Kim, “Altered mucin core peptide immunoreactivity in the colon polyp-carcinoma sequence,” Oncol. Res. 8(2), 53–61 (1996).

    [21] D. J. Buchsbaum, M. B. Khazaeli, M. S. Mayo, P. L. Roberson, “Comparison of multiple bolus and continuous injections of 131I-labeled CC49 for therapy in a colon cancer xenograft model,” Clin. Cancer Res. 5(10 Suppl), 3153s–3159s (1999).

    [22] F. Guadagni, M. Roselli, M. Cosimelli, P. Ferroni, A. Spila, F. Cavaliere, R. Arcuri, S. Carlini, S. Mariotti, G.M. Gandolfo, C. U. Casciani, J. W. Greiner, J. Schlom, “TAG72 expression and its role in the biological evaluation of human colorectal cancer,” Anticancer Res. 16(4B), 2141–2148 (1996).

    [23] M. Roselli, F. Guadagni, O. Buonomo, A. Belardi, P. Ferroni, A. Diodati, D. Anselmi, C. Cipriani, C. U. Casciani, J. Greiner, J. Schlom, “Tumor markers as targets for selective diagnostic and therapeutic procedures,” Anticancer Res. 16(4B), 2187–2192 (1996).

    [24] D. J. Yang, E. E. Kim, T. Inoue, “Targeted molecular imaging in oncology,” Ann. Nucl. Med. 20(1), 1–11 (2006).

    [25] S. H. Britz-Cunningham, S. J. Adelstein, “Molecular targeting with radionuclides: State of the science,” J. Nucl. Med. 44(12), 1945–1961 (2003).

    [26] R. F. Meredith, A. J. Bueschen, M. B. Khazaeli, W. E. Plott, W. E. Grizzle, R. H. Wheeler, J. Schlom, C. D. Russell, T. Liu, A. F. LoBuglio, “Treatment of metastatic prostate carcinoma with radiolabeled antibody CC49,” J. Nucl. Med. 35(6), 1017–1022 (1994).

    [27] C. R. Divgi, A. M. Scott, L. Dantis, P. Capitelli, K. Siler, S. Hilton, R. D. Finn, N. Kemeny, D. Kelsen, L. Kostakoglu et al., “Phase I radioimmunotherapy trial with iodine-131-CC49 in metastatic colon carcinoma,” J. Nucl. Med. 36(4), 586–592 (1995).

    [28] R. J. Domingo, R. M. Reilly, “Pre-targeted radioimmunotherapy of human colon cancer xenografts in athymic mice using streptavidin-CC49 monoclonal antibody and 90Y-DOTA-biotin,” Nucl. Med. Commun. 21(1), 89–96 (2000).

    [29] D. J. Buchsbaum, B. E. Rogers, M. B. Khazaeli, M. S. Mayo, D. E. Milenic, S. V. Kashmiri, C. J. Anderson, L. L. Chappell, M. W. Brechbiel, D. T. Curiel, “Targeting strategies for cancer radiotherapy,” Clin. Cancer Res. 5(10 Suppl), 3048s–3055s (1999).

    [30] D. Buchsbaum, M. B. Khazaeli, T. Liu, S. Bright, K. Richardson, M. Jones, R. Meredith, “Fractionated radioimmunotherapy of human colon carcinoma xenografts with 131I-labeled monoclonal antibody CC49,” Cancer Res. 55(23 Suppl), 5881s–5887s (1995).

    [31] B. Ballou, G. W. Fisher, T. R. Hakala, D. L. Farkas, “Tumor detection and visualization using cyanine fluorochrome-labeled antibodies,” Biotechnol. Prog. 13(5), 649–658 (1997).

    [32] V. Ntziachristos, “Fluorescence molecular imaging,” Annu. Rev. Biomed. Eng. 8, 1–33 (2006).

    [33] D. C. Andersen, D. E. Reilly, “Production technologies for monoclonal antibodies and their fragments,” Curr. Opin. Biotechnol. 15(5), 456–462 (2004).

    [34] A. Thor, N. Ohuchi, C. A. Szpak, W. W. Johnston, J. Schlom, “Distribution of oncofetal antigen tumor-associated glycoprotein-72 defined by monoclonal antibody B72.3,” Cancer Res. 46(6), 3118– 3124 (1986).

    [35] H. Andersson, T. Baechi, M. Hoechl, C. Richter, “Autofluorescence of living cells,” J. Microsc. 191(Pt 1), 1–7 (1998).

    [36] R. DaCosta, “Mechanisms of fluorescence endoscopy of the human colon,” in Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada (1999).

    [37] B. Ballou, G. W. Fisher, A. S. Waggoner, D. L. Farkas, J. M. Reiland, R. Jaffe, R. B. Mujumdar, S. R. Mujumdar, T. R. Hakala, “Tumor labeling in vivo using cyanine-conjugated monoclonal antibodies,” Cancer Immunol. Immunother. 41(4), 257– 263 (1995).

    [38] S. Folli, P. Westermann, D. Braichotte, A. Pelegrin, G. Wagnieres, H. van den Bergh, J. P. Mach, “Antibody-indocyanin conjugates for immunophotodetection of human squamous cell carcinoma in nude mice,” Cancer Res. 54(10), 2643–2649 (1994).

    [39] S. Ito, N. Muguruma, Y. Kusaka, M. Tadatsu, K. Inayama, Y. Musashi, M. Yano, T. Bando, H. Honda, I. Shimizu, K. Ii, K. Takesako, H. Takeuchi, S. Shibamura, “Detection of human gastric cancer in resected specimens using a novel infrared fluorescent anti-human carcinoembryonic antigen antibody with an infrared fluorescence endoscope in vitro,” Endoscopy 33(10), 849–853 (2001).

    [40] N. Muguruma, S. Ito, T. Bando, S. Taoka, Y. Kusaka, S. Hayashi, S. Ichikawa, Y. Matsunaga, Y. Tada, S. Okamura, K. Ii, K. Imaizumi, K. Nakamura, K. Takesako, S. Shibamura, “Labeled carcinoembryonic antigen antibodies excitable by infrared rays: A novel diagnostic method for microcancers in the digestive tract,” Intern. Med. 38(7), 537–542 (1999).

    [41] T. Bando, N. Muguruma, S. Ito, Y. Musashi, K. Inayama, Y. Kusaka, M. Tadatsu, I. Kunio, T. Irimura, S. Shibamura, K. Takesako, “Basic studies on a labeled anti-mucin antibody detectable by infrared-fluorescence endoscopy,” J. Gastroenterol. 37(4), 260–269 (2002).

    [42] P. Carter, L. Smith, M. Ryan, “Identification and validation of cell surface antigens for antibody targeting in oncology,” Endocr. Relat. Cancer 11(4), 659–687 (2004).

    [43] P. A. Edwards, “Heterogeneous expression of cellsurface antigens in normal epithelia and their tumours, revealed by monoclonal antibodies,” Br. J. Cancer 51(2), 149–160 (1985).

    [44] X. Montet, V. Ntziachristos, J. Grimm, R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res. 65(14), 6330–6336 (2005).

    [45] A. Bogaards, “In vivo fluorescence imaging of markers for detection and guided resection of cancer,” Erasmus University, Rotterdam, The Netherlands (2006).

    [46] J. H. Lee, J. W. Kim, Y. K. Cho, C. I. Sohn, W. K. Jeon, B. I. Kim, E. Y. Cho, “Detection of colorectal adenomas by routine chromoendoscopy with indigocarmine,” Am. J. Gastroenterol. 98(6), 1284–1288 (2003).

    [47] H. Sezaki, “Mucosal penetration enhancement,” J. Drug. Target. 3(3), 175–177 (1995).

    [48] S. Takatsuka, T. Kitazawa, T. Morita, Y. Horikiri, H. Yoshino, “Enhancement of intestinal absorption of poorly absorbed hydrophilic compounds by simultaneous use of mucolytic agent and non-ionic surfactant,” Eur. J. Pharm. Biopharm. 62(1), 52–58 (2006).

    [49] K. P. Janssen, D. Vignjevic, R. Boisgard, T. Falguieres, G. Bousquet, D. Decaudin, F. Dolle, D. Louvard, B. Tavitian, S. Robine, L. Johannes, “In vivo tumor targeting using a novel intestinal pathogen-based delivery approach,” Cancer Res. 66(14), 7230–7236 (2006).

    [50] R. Kiesslich, M. Goetz, M. Vieth, P. R. Galle, M. F. Neurath, “Confocal laser endomicroscopy,” Gastrointest. Endosc. Clin. N. Am. 15(4), 715–731 (2005).

    [51] B. C.Wolf, J. C. D’Emilia, R. R. Salem, D. DeCoste, H. F. Sears, L. S. Gottlieb, G. D. Steele, Jr., “Detection of the tumor-associated glycoprotein antigen (TAG72) in premalignant lesions of the colon,” J. Natl. Cancer Inst. 81(24), 1913–1917 (1989).

    [52] A. Thor, S. H. Itzkowitz, J. Schlom, Y. S. Kim, S. Hanauer, “Tumor-associated glycoprotein (TAG72) expression in ulcerative colitis,” Int. J. Cancer 43(5), 810–815 (1989).

    [53] B. E. Rogers, P. L. Roberson, S. Shen, M. B. Khazaeli, M. Carpenter, S. Yokoyama, M. W. Brechbiel, A. F. LoBuglio, D. J. Buchsbaum, “Intraperitoneal radioimmunotherapy with a humanized anti-TAG72 (CC49) antibody with a deleted CH2 region,” Cancer Biother. Radiopharm. 20(5), 502–513 (2005).

    [54] J. Xiao, S. Horst, G. Hinkle, X. Cao, E. Kocak, J. Fang, D. Young, M. Khazaeli, D. Agnese, D. Sun, E. Martin, Jr., “Pharmacokinetics and clinical evaluation of 125I-radiolabeled humanized CC49 monoclonal antibody (HuCC49deltaC(H)2) in recurrent and metastatic colorectal cancer patients,” Cancer Biother. Radiopharm. 20(1), 16–26 (2005).

    [55] D. M. Agnese, S. F. Abdessalam, W. E. Burak, Jr., M. W. Arnold, D. Soble, G. H. Hinkle, D. Young, M. B. Khazaeli, E. W. Martin, Jr., “Pilot study using a humanized CC49 monoclonal antibody (HuCC49DeltaCH2) to localize recurrent colorectal carcinoma,”Ann. Surg.Oncol.11(2), 197–202 (2004).

    [56] M. A. Ortner, G. Dorta, A. L. Blum, P. Michetti, “Endoscopic interventions for preneoplastic and neoplastic lesions: Mucosectomy, argon plasma coagulation, and photodynamic therapy,” Dig. Dis. 20(2), 167–172 (2002).

    [57] R. H. Hawes, “Perspectives in endoscopic mucosal resection,” Gastrointest. Endosc. Clin. N. Am. 11(3), 549–552 (2001).

    [58] R. J. Cote, D. P. Houchens, C. L. Hitchcock, A. D. Saad, R. G. Nines, J. K. Greenson, S. Schneebaum, M. W. Arnold, E. W. Martin, Jr., “Intraoperative detection of occult colon cancer micrometastases using 125I-radiolabeled monoclonal antibody CC49,” Cancer 77(4), 613–620 (1996).

    [59] K. Ikawa, Y. Terashima, K. Sasaki, S. Tashiro, “Genetic detection of liver micrometastases that are undetectable histologically,” J. Surg. Res. 106(1), 124–130 (2002).

    [60] M. J. Koppe, A. C. Soede, W. Pels, W. J. Oyen, D. M. Goldenberg, R. P. Bleichrodt, O. C. Boerman, “Experimental radioimmunotherapy of small peritoneal metastases of colorectal origin,” Int. J. Cancer 106(6), 965–972 (2003).

    [61] J. K. Greenson, C. E. Isenhart, R. Rice, C. Mojzisik, D. Houchens, E. W. Martin, Jr., “Identification of occult micrometastases in pericolic lymph nodes of Duke’s B colorectal cancer patients using monoclonal antibodies against cytokeratin and CC49. Correlation with long-term survival,” Cancer 73(3), 563–569 (1994).

    [62] R. Muraro, M. Kuroki, D. Wunderlich, D. J. Poole, D. Colcher, A. Thor, J. W. Greiner, J. F. Simpson, A. Molinolo, P. Noguchi et al., “Generation and characterization of B72.3 second generation monoclonal antibodies reactive with the tumor-associated glycoprotein 72 antigen,” Cancer Res. 48(16), 4588– 4596 (1988).

    [63] M. Guindi, R. H. Riddell, “The pathology of epithelial pre-malignancy of the gastrointestinal tract,” Best Pract. Res. Clin. Gastroenterol. 15(2), 191–210 (2001).

    [64] F. Yuan, M. Leunig, D. A. Berk, R. K. Jain, “Microvascular permeability of albumin, vascular surface area, and vascular volumemeasured in human adenocarcinoma LS174T using dorsal chamber in SCID mice,” Microvasc. Res. 45(3), 269–289 (1993).

    [65] F. Yuan, M. Dellian, D. Fukumura,M. Leunig, D. A. Berk, V. P. Torchilin, R. K. Jain, “Vascular permeability in a human tumor xenograft: Molecular size dependence and cutoff size,” Cancer Res. 55(17), 3752–3756 (1995).

    [66] S. M. Larson, A. M. El-Shirbiny, C. R. Divgi, G. Sgouros, R. D. Finn, J. Tschmelitsch, A. Picon, M. Whitlow, J. Schlom, J. Zhang, A. M. Cohen, “Single chain antigen binding protein (sFv CC49): First human studies in colorectal carcinoma metastatic to liver,” Cancer 80(12 Suppl), 2458–2468 (1997).

    [67] Y. Tang, S. Yang, J. Gari′epy, D. Scollard, R. Reilly, “Construction and evaluation of the tumor imaging properties of 123I-labeled recombinant and enzymatically-generated Fab fragments of the TAG72 monoclonal antibody CC49,” Bioconjug. Chem. 18(3), 677–684 (2007).

    [68] J. Gui, T. Moyana, B. Malcolm, J. Xiang, “Identification of a decapeptide with the binding reactivity for tumor-associated TAG72 antigen from a phage displayed library,” Proteins 24(3), 352–358 (1996).

    [69] A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, C. Grotzinger, “Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands,” Nat. Biotechnol. 19(4), 327–331 (2001).

    [70] K. Kelly, H. Alencar, M. Funovics, U. Mahmood, R. Weissleder, “Detection of invasive colon cancer using a novel, targeted, library-derived fluorescent peptide,” Cancer Res. 64(17), 6247–6251 (2004).

    [71] R. K. Jain, “Transport of molecules, particles, and cells in solid tumors,” Annu. Rev. Biomed. Eng. 1, 241–263 (1999).

    [72] J. W. Greiner, F. Guadagni, M. Roselli, C. A. Nieroda, “Novel approaches to tumor detection and therapy using a combination of monoclonal antibody and cytokine,” Anticancer Res. 16(4B), 2129–2133 (1996).

    [73] M. Roselli, F. Guadagni, O. Buonomo, A. Belardi, V. Vittorini, R. Mariani-Costantini, J. W. Greiner, C. U. Casciani, J. Schlom, “Systemic administration of recombinant interferon alfa in carcinoma patients upregulates the expression of the carcinoma-associated antigens tumor-associated glycoprotein-72 and carcinoembryonic antigen,” J. Clin. Oncol. 14(7), 2031–2042 (1996).

    [74] O. Veiseh, C. Sun, J. Gunn, N. Kohler, P. Gabikian, D. Lee, N. Bhattarai, R. Ellenbogen, R. Sze, A. Hallahan, J. Olson, M. Zhang, “Optical and MRI multifunctional nanoprobe for targeting gliomas,” Nano Lett. 5(6), 1003–1008 (2005).

    RALPH S. DACOSTA, YING TANG, TUULA KALLIOMAKI, RAYMOND M. REILLY, ROBERT WEERSINK, ALISHA R. ELFORD, NORMAN E. MARCON, BRIAN C. WILSON. IN VIVO NEAR-INFRARED FLUORESCENCE IMAGING OF HUMAN COLON ADENOCARCINOMA BY SPECIFIC IMMUNOTARGETING OF A TUMOR-ASSOCIATED MUCIN[J]. Journal of Innovative Optical Health Sciences, 2009, 2(4): 407
    Download Citation