• Laser & Optoelectronics Progress
  • Vol. 54, Issue 9, 93003 (2017)
Ouyang Aiguo*, Zhang Yu, Tang Tianyi, and Liu Yande
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.093003 Cite this Article Set citation alerts
    Ouyang Aiguo, Zhang Yu, Tang Tianyi, Liu Yande. Analysis of Methanol/Ethanol Diesel Identification and Content Determination Based on the Mid-Infrared Spectra[J]. Laser & Optoelectronics Progress, 2017, 54(9): 93003 Copy Citation Text show less
    References

    [1] Hahn-Hgerdal B, Galbe M, Gorwa-Grauslund M F, et al. Bio-ethanol-the fuel of tomorrow from the residues of today[J]. Trends in Biotechnology, 2006, 24(12): 549-556.

    [2] Barnett A, Honsberg C, Kirkpatrick D, et al. 50% efficient solar cell architectures and designs[C]. Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, 2006: 9241110.

    [3] Zhao Hui, Zhao Kun, Tian Lu. Correlation between terahertz absorption spectra and cetane number of biodiesel and diesel[J]. Laser & Optoelectronics Progress, 2011, 48(11): 113001.

    [4] Ozanyan K B, Yeo T L, Hindle F P, et al. Fiber-based UV laser-diode fluorescence sensor for commercial gasolines[J]. IEEE Sensors Journal, 2004, 4(5): 681-690.

    [5] Frusteri F, Freni S. Bio-ethanol, a suitable fuel to produce hydrogen for a molten carbonate fuel cell[J]. Journal of Power Sources, 2007, 173(1): 200-209.

    [6] Fernandes H L, Raimundo I M, Jr, Pasquini C, et al. Simultaneous determination of methanol and ethanol in gasoline using NIR spectroscopy: effect of gasoline composition[J]. Talanta, 2008, 75(3): 804-810.

    [7] Steers D, Gerrard C, Hirst B, et al. Gasoline analysis and brand identification using a static Fourier-transform ultraviolet spectrometer[J]. Journal of Optics A: Pure & Applied Optics, 1999, 1(6): 680.

    [8] Ortega Clavero V, Weber A, Schrder W, et al. Detailed spectral monitoring of different combustible blends based on gasoline, ethanol and methanol using FT-Raman spectroscopy[J]. Environmental Biotechnology, 2012, 8: 1-6.

    [9] Li Sheng, Dai Liankui. Fast recognition of gasoline brands based on the Raman spectroscopy[J]. Spectroscopy and Spectral Analysis, 2010, 30(11): 2993-2997.

    [10] Souza L M D, Mitsutake H, Gontijo L C, et al. Quantification of residual automotive lubricant oil as an adulterant in Brazilian S-10 diesel using MIR spectroscopy and PLS[J]. Fuel, 2014, 130: 257-262.

    [11] Li Yanru. Determination of mid-infrared spectroscopy methanol content of methanol in gasoline[J] Shanxi Chemical Industry, 2014, 34(4): 38-39.

    [12] Wu Xiaohong, Sun Jun, Wu Bin, et al. Qualitative analysis model of near infrared spectra of pork based on synergy interval partial least squares discriminant analysis[J]. Laser & Optoelectronics Progress, 2015, 52(4): 043003.

    [13] Hao Yong, Sun Xudong, Gao Rongjie, et al. Application of visible and near infrared spectroscopy to dentification of navel orange varietis using SIMCA and PLS-DA methods[J]. Transactions of the Chinese Society of Agriculture Engineering, 2010, 26(12): 373-377.

    [14] Xu H, Qi B, Sun T, et al. Variable selection in visible and near infrared spectra: application to on line determination of sugar content in pears[J]. Journal of Food Engineering, 2012, 109(1): 142-147.

    [15] Ignat T, Schmilovitch Z, Fefoldi J. Non-destructive measurement of ascorbic acid content in bell peppers by VIS-NIR and SWIR spectrometry[J]. Postharvest Biology and Technology, 2012, 74(6): 91-99.

    [16] Fu H Y, Huang D C, Yang T M, et al. Rapid recognition of Chinese herbal pieces of Areca catechu by different concocted processes using Fourier transform mid-infrared and near-infrared spectroscopy combined with partial least-squares discriminant analysis[J]. Chinese Chemical Letters, 2013, 24(7): 639-642.

    [17] LI S, DAI L K. Classification of gasoline brand and origin by Raman spectroscopy and a novel R-weighted LSSVM algorithm[J]. Fuel, 2012, 96(7): 146-152.

    [18] Liu Yande, Zhou Yanrui, Pan Yuanyuan. Based on least squares support chili soluble solids and vitamin C content of vector machine near infrared spectroscopy[J]. Optics and Precision Engineering, 2014, 22(2): 281-288.

    [19] Liu Yande, Zhou Yanrui. GA-LSSVM based near infrared spectroscopy detection of apple sugar content[J]. Journal of Northwest A & F University (Natural Science Edition), 2013, 41(7): 229-234.

    [20] Peng Xiuhui, Huang Changyi, Liu Fei, et al. Near infrared spectroscopy synergy interval wavelength selection method using the LSSVM model[J]. Spectroscopy and Spectral Analysis, 2014, 34(3): 668-672.

    [21] Wu Tiebin, Zhu Hongqiu, Sun Bei, et al. Application of PLS-LSSVM model in zinc purification[J]. Computer Engineering, 2012, 38(10): 212-214.

    [22] Liu Yande, Wu Mingming, Sun Xudong, et al. Simultaneous detection of surface deficiency and soluble solids content for Amygdalus persica by online visible-near infrared transmittance spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 289-295.

    [23] Sun Tong, Wu Yiqing, Li Xiaozhen, et al. Discrimination of camellia oil adulteration by NIR spectra and subwindow permutation analysis[J]. Acta Optica Sinica, 2015, 35(6): 0630005.

    [24] Liu Fei, Feng Lei, Chai Rongyao, et al. Discrimination of rice canopy leaf blast based on spectroscopic techniques and direct orthogonal signal correction[J]. Acta Optica Sinica, 2010, 30(2): 585-589.

    [25] Luo Xia, Hong Tiansheng, Luo Kuo, et al. Application of hyperspectrum technology in non-destructive masurement of soluble solid content in pitaya[J]. Laser & Optoelectronics Progress, 2015, 52(8): 083002.

    Ouyang Aiguo, Zhang Yu, Tang Tianyi, Liu Yande. Analysis of Methanol/Ethanol Diesel Identification and Content Determination Based on the Mid-Infrared Spectra[J]. Laser & Optoelectronics Progress, 2017, 54(9): 93003
    Download Citation