• Infrared and Laser Engineering
  • Vol. 47, Issue 2, 204004 (2018)
Zhang Daijun1、2、3、*, Luo Haibo1、3, Chang Zheng1、3, and Hui Bin1、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/irla201847.0204004 Cite this Article
    Zhang Daijun, Luo Haibo, Chang Zheng, Hui Bin. Calculation of transient temperature rise of dome under laminar heat transfer condition and improvement of dome structure[J]. Infrared and Laser Engineering, 2018, 47(2): 204004 Copy Citation Text show less
    References

    [1] Zhang Yiguang, Yang Jun, Li Xiaodan. Thermal property assessment experiment of the optic dome[J]. Infrared and Laser Engineering, 2008, 37(S): 556-559. (in Chinese)

    [2] Luo Haibo, Zhang Daijun, Hui Bin, et al. Numerical calculation of turbulent convection heat transfer over infrared dome based on SST turbulence model[J]. Infrared and Laser Engineering, 2016, 45(7): 0703002. (in Chinese)

    [3] Crabtree L F, Dommentt R L, Woodley J G. Estimation of heat transfer to flat paltes, cones and blunt bodies[R]. Royal Aircraft Establishment Technical Report, No. 3637, 1965: 1-25.

    [5] Stetson K F. Hypersonic boundary layer transition experiments[R]. AFWAL-TR-80-3062. Air Force Wright Aeronautical Laboratories, 1980.

    [6] Stetson K F. On predicting hypersonic boundary layer transition[R]. AFWAL-TM-87-160-FIMG. Air Force Wright Aeronautical Laboratories, 1987.

    [7] Stine H A, Wanlass K. Theoretical and experimental investigation of aerodynamic-heating and isothermal heat-transfer parameters on a hemispherical nose with laminar boundary layer at supersonic mach numbers[S]. NASA, NACA-TN-3344-1954.

    [8] Crawford D H, McCauley W D. Investigation of the laminar aerodynamic heat-transfer characteristics of a hemisphere-cylineder in the langley 11-inch hypersonic tunnel at a mach number of 6.8[R]. NASA, NACA TN 3706, 1956.

    [9] Beckwith I E, Gallagher J J. Heat transfer and recovery temperatures on sphere with laminar, transitional, and turbulenct boundary layers at Mach number of 2.00 and 4.15[R]. NASA, NACA TN 4125, 1956.

    [10] Driest E R V. On the aerodynamic heating of blunt bodies[J]. ZAMP, 1958, 9(5-6): 233-248.

    [11] Wu Zhen, Sun Luchao, Wang Jingyang. Effects of sintering method and sintering temperature on the microstructure and properties of porous Y2SiO5[J]. Journal of Materials Science & Technology, 2015, 31(12): 1237-1243.

    [12] Lili L V. Study of engineering method of calculation of aerodynamic heating of body at hypersonic[D]. Xi′an: Northwestern Polytechnical University, 2005: 22-29. (in Chinese)

    [13] Aderson J D Jr. Hypersonic and High Temperature Gas Dynamic[M]. New York: McGraw-Hill, 1989: 53-56, 152-155, 189-190, 286-288.

    [14] Li Fengwei, Song Wenping, Yang Yong, et al. Introduction to Aerodynamics[M]. Xi′an: Press of NWPU, 2007: 181-189. (in Chinese)

    [15] Wang Xucheng. Finite Element Method[M]. Beijing: Tsinghua University Press, 2003: 441-445. (in Chinese)

    [16] Bian Yingui, Xu Ligong. Aerothermodynamics[M]. Hefei: Press of University of Science and Technology of China, 2011: 325-327. (in Chinese)

    [17] Klein C. Infrared missile domes: heat flux and thermal shock[C]//SPIE, 1993, 1997: 150-169.

    [18] Yu Huaizhi. Infrared Optical Materials[M]. Beijing: National Defence Indurstry Press, 2007: 126-127, 139-141. (in Chinese)

    Zhang Daijun, Luo Haibo, Chang Zheng, Hui Bin. Calculation of transient temperature rise of dome under laminar heat transfer condition and improvement of dome structure[J]. Infrared and Laser Engineering, 2018, 47(2): 204004
    Download Citation