• Journal of Semiconductors
  • Vol. 45, Issue 10, 101701 (2024)
Zheng Zhou, Yixin Li, Zhiyuan Wu, Xinping Ma..., Shichang Fan and Shaoyun Huang*|Show fewer author(s)
Author Affiliations
  • School of Electronics, Beijing Key Laboratory of Quantum Devices, Key Laboratory for the Physics and Chemistry of Nanodevices, Peking University, Beijing 100871, China
  • show less
    DOI: 10.1088/1674-4926/24050043 Cite this Article
    Zheng Zhou, Yixin Li, Zhiyuan Wu, Xinping Ma, Shichang Fan, Shaoyun Huang. The exchange interaction between neighboring quantum dots: physics and applications in quantum information processing[J]. Journal of Semiconductors, 2024, 45(10): 101701 Copy Citation Text show less
    References

    [1] H A Bhat, F A Khanday, B K Kaushik et al. Quantum computing: fundamentals, implementations and applications. IEEE Open J Nanotechnology, 3, 61(2022).

    [2] D P DiVincenzo. The physical implementation of quantum computation. Fortschritte der Physik, 48, 9-11(2000).

    [3] I Georgescu. The DiVincenzo criteria 20 years on. Nat Rev Phys, 2, 666(2020).

    [4] T Ladd, F Jelezko, R Laflamme et al. Quantum computers. Nature, 464, 45(2010).

    [5] S J Wei, H Li, G L Long. A full quantum eigensolver for quantum chemistry simulations. Research, 1, 111(2020).

    [6] P W Shor. Algorithms for quantum computation: discrete logarithms and factoring, 124(1994).

    [7] L K Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys Rev Lett, 79, 325(1997).

    [8] R Hanson, L P Kouwenhoven, J R Petta et al. Spins in few-electron quantum dots. Rev Mod Phys, 79, 1217(2007).

    [9] C Kloeffel, D Loss. Prospects for spin-based quantum computing in quantum dots. Annu Rev Condens Matter Phys, 4, 51(2013).

    [10] X Zhang, H O Li, K Wang et al. Qubits based on semiconductor quantum dots. Chin Phys B, 27, 020305(2018).

    [11] A Chatterjee, P Stevenson, S Franceschi et al. Semiconductor qubits in practice. Nat Rev Phys, 3, 157(2021).

    [12] N Wang, B C Wang, G P Guo. New progress of silicon-based semiconductor quantum computation. Acta Phys Sin, 71, 230301(2022).

    [13] X Zhang, H O Li, G Cao et al. Semiconductor quantum computation. Natl Sci Rev, 6, 32(2019).

    [14] P Barthelemy, L M K Vandersypen. Quantum dot systems: a versatile platform for quantum simulations. Ann Phys, 525, 10-11(2013).

    [15] G Burkard, T D Ladd, A Pan et al. Semiconductor spin qubits. Rev Mod Phys, 95, 025003(2023).

    [16] J W Mu, S Y Huang, Z H Liu et al. A highly tunable quadruple quantum dot in a narrow bandgap semiconductor InAs nanowire. Nanoscale, 13, 3983(2021).

    [17] A M J Zwerver, T Krähenmann, T F Watson et al. Qubits made by advanced semiconductor manufacturing. Nature Electronics, 5, 184(2022).

    [18] K Pomorski, P Giounanlis, E Blokhina et al. Analytic view on coupled single-electron lines. Semicond Sci Technol, 34, 125015(2019).

    [19] W I L Lawrie, H G J Eenink, N W Hendrickx et al. Quantum dot arrays in silicon and germanium. Appl Phys Lett, 116, 080501(2020).

    [20] R Sánchez, Marcos F Gallego, G Platero. Superexchange blockade in triple quantum dots. Phys Rev B, 89, 161402(R)(2014).

    [21] H Qiao, Y P Kandel, S Fallahi et al. Long-distance superexchange between semiconductor quantum-dot electron spins. Phys Rev Lett, 126, 017701(2021).

    [22] L P Kouwenhoven, D G Austing, S Tarucha et al. Few-electron quantum dots. Rep Prog Phys, 64, 701(2001).

    [23] S M Reimann, M Manninen. Electronic structure of quantum dots. Rev Mod Phys, 74, 1283(2002).

    [24] D Feng, G J Jin. Condensed matter physics, 1, 1(2013).

    [25] W Heitler, F London. Wechselwirkung neutraler atome und homöopolare bindung nach der quantenmechanik. Zeitschrift für Physik, 44, 455(1927).

    [26] T Hatano, S Amaha, T Kubo et al. Manipulation of exchange coupling energy in a few-electron double quantum dot. Phys Rev B, 77, 241301(2008).

    [27] V W Heisenberg. Mehrkörperproblem und resonanz in der quantenmechanik. Zeitschrift für Physik, 38, 411(1926).

    [28] P A Dirac. On the Theory of quantum mechanics. The Royal society, 661(1926).

    [29] W J Mullin, G Blaylock. Quantum statistics: Is there an effective fermion repulsion or boson attraction. Am J Phys, 71, 1223(2003).

    [30] G H Wannier. Statistical physics, 1, 1(1987).

    [31] R B Leighton. Principles of modern physics, 1, 1(1959).

    [32] D J Griffiths, D F Schroeter. Introduction to quantum mechanics (third edition), 1, 1(2018).

    [33] J Y Zeng. Quantum mechanics (fifth edition), 1, 1(2013).

    [34] W G Van der Wiel, M Stopa, T Kodera et al. Semiconductor quantum dots for electron spin qubits. New J Phys, 8, 28(2006).

    [35] A L Saraiva, M J Calderón, B Koiller. Reliability of the Heitler−London approach for the exchange coupling between electrons in semiconductor nanostructures. Phys Rev B, 233302(2007).

    [36] E K Liu. Semiconductor physics (eighth edition), 1, 1(2023).

    [37] G Burkard, D Loss, D P DiVincenzo. Coupled quantum dots as quantum gates. Phys Rev B, 59, 2070(1999).

    [38] D P DiVincenzo, D Loss. Quantum information is physical. Superlattices and Microstructures, 23, 420(1998).

    [39] M Fanciulli. Electron spin resonance and related phenomena in low dimensional structures, 1, 1(2009).

    [40] Y Tokura, D G Austing, S Tarucha. Single-electron tunnelling in two vertically coupled quantum dots. J Phys Condens Matter, 11, 6023(1999).

    [41] E A Laird, J M Taylor, D P DiVincenzo et al. Coherent spin manipulation in an exchange-only qubit. Phys Rev B, 82, 075403(2010).

    [42] J M Elzerman, R Hanson, J S Greidanus et al. Few-electron quantum dot circuit with integrated charge read out. Phys Rev B, 67, 161308(R)(2003).

    [43] M Russ, G Burkard. Three-electron spin qubits. J Phys Condens Matter, 29, 393001(2017).

    [44] J Hubbard. Electron correlations in narrow energy bands. Proc R Soc Lond A, 276, 238(1963).

    [45] der Wiel W G Van, S De Franceschi, J M Elzerman et al. Electron transport through double quantum dots. Rev Mod Phys, 75, 1(2003).

    [46] J Spałek. Theory of unconventional superconductivity in strongly correlated systems: real space pairing and statistically consistent mean-field theory- in perspective. Acta Phys Pol A, 121, 764(2012).

    [47] J M Taylor, J R Petta, A C Johnson et al. Relaxation, dephasing, and quantum control of electron spins in double quantum dots. Phys Rev B, 76, 035315(2007).

    [48] A P Balachandran, E Ercolessi, G Morandi et al. Hubbard model and anyon superconductivity: a review. Int J Mod Phys B, 4, 2057(1990).

    [49] J Spałek. Effect of pair hopping and magnitude of intra-atomic interaction on exchange-mediated superconductivity. Phys Rev B, 37, 533(1988).

    [50] S Bravyi, D P DiVincenzo, D Loss. Schrieffer–Wolff transformation for quantum many-body systems. Ann Phys, 326, 2793(2011).

    [51] A Assa. Interacting electrons and quantum magnetism, 1, 1(1998).

    [52] L DiCarlo, H J Lynch, A C Johnson et al. Differential charge sensing and charge delocalization in a tunable double quantum dot. Phys Rev Lett, 92, 226801(2004).

    [53] Y J Hu, H O H Churchill, D J Reilly et al. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nat Nanotechnol, 2, 622(2007).

    [54] X M Wang, S Y Huang, J Y Wang et al. A charge sensor integration to tunable double quantum dots on two neighboring InAs nanowires. Nanoscale, 13, 1048(2021).

    [55] T K Hsiao, C J van Diepen, U Mukhopadhyay et al. Efficient orthogonal control of tunnel couplings in a quantum dot array. Phys Rev Appl, 13, 054018(2020).

    [56] A R Mills, D M Zajac, M J Gullans et al. Shuttling a single charge across a one-dimensional array of silicon quantum dots. Nat Commun, 10, 1063(2019).

    [57] X D Hu, S D Sarma. Hilbert-space structure of a solid-state quantum computer: two-electron states of a double-quantum-dot artificial molecule. Phys Rev A, 61, 062301(2000).

    [58] H E Ercan, S N Coppersmith, M Friesen. Strong electron−electron interactions in Si/SiGe quantum dots. Phys Rev B, 104, 235302(2021).

    [59] D Bellucci, M Rontani, F Troiani et al. Competing mechanisms for singlet−triplet transition in artificial molecules. Phys Rev B, 69, 201308(2004).

    [60] G Giavaras, Y Tokura. Probing the singlet−triplet splitting in double quantum dots: implications of the ac field amplitude. Phys Rev B, 100, 195421(2019).

    [61] M Stopa, C M Marcus. Magnetic field control of exchange and noise immunity in double quantum dots. Nano Lett, 8, 1778(2008).

    [62] S Geyer, B Hetényi, S Bosco et al. Anisotropic exchange interaction of two hole spin qubits. Nat Phys, 1, 1(2024).

    [63] Z H Liu, O Entin-Wohlman, A Aharony et al. Control of the two-electron exchange interaction in a nanowire double quantum dot. Phys Rev B, 98, 241303(2018).

    [64] D Loss, D P DiVincenzo. Quantum computation with quantum dots. Phys Rev A, 57, 1050(1998).

    [65] F H L Koppens, C Buizert, K J Tielrooij et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature, 442, 766(2006).

    [66] H Liu, K Wang, F Gao et al. Ultrafast and electrically tunable Rabi frequency in a Germanium hut wire hole spin qubit. Nano Lett, 23, 3810(2023).

    [67] S G J Philips, M T Mądzik, S V Amitonov et al. Universal control of a six-qubit quantum processor in silicon. Nature, 609, 919(2022).

    [68] J Levy. Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. Phys Rev Lett, 89, 147902(2002).

    [69] D DiVincenzo, D Bacon, J Kempe et al. Universal quantum computation with the exchange interaction. Nature, 408, 339(2000).

    [70] T Zhang, H Liu, F Cao et al. Anisotropic g-factor and spin−orbit field in a germanium hut wire double quantum dot. Nano Lett, 21, 3835(2021).

    [71] J Y Wang, S Y Huang, Z J Lei et al. Measurements of the spin−orbit interaction and Landé g factor in a pure-phase InAs nanowire double quantum dot in the Pauli spin-blockade regime. Appl Phys Lett, 109, 053106(2016).

    [72] J R Petta, A C Johnson, J M Taylor et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science, 309, 2180(2005).

    [73] M P Wardrop, A C Doherty. Exchange-based two-qubit gate for singlet−triplet qubits. Phys Rev B, 90, 045418(2014).

    [74] A C Johnson, J R Petta, J M Taylor et al. Triplet–singlet spin relaxation via nuclei in a double quantum dot. Nature, 435, 925(2005).

    [75] J R Prance, Z Shi, C B Simmons et al. Single-shot measurement of triplet−singlet relaxation in a Si/SiGe double quantum dot. Phys Rev Lett, 108, 046808(2012).

    [76] A J Weinstein, M D Reed, A M Jones et al. Universal logic with encoded spin qubits in silicon. Nature, 615, 817(2023).

    [77] R W Andrews, C Jones, M D Reed et al. Quantifying error and leakage in an encoded Si/SiGe triple-dot qubit. Nat Nanotechnol, 14, 747(2019).

    [78] C D Andrew, P W Matthew. Two-qubit gates for resonant exchange qubits. Phys Rev Lett, 111, 050503(2013).

    [79] J Medford, J Beil, J M Taylor et al. Self-consistent measurement and state tomography of an exchange-only spin qubit. Nat Nanotechnol, 8, 654(2013).

    [80] L Petit, M Russ, G H G J Eenink et al. Design and integration of single-qubit rotations and two-qubit gates in silicon above one kelvin. Commun Mater, 3, 82(2022).

    [81] D Q L Nguyen, I Heinz, G Burkard. Quantum gates with oscillating exchange interaction. Quantum Science and Technology, 9, 0150,20(2024).

    [82] A J Sigillito, M J Gullans, L F Edge et al. Coherent transfer of quantum information in a silicon double quantum dot using resonant SWAP gates. npj Quantum Information, 5, 110(2019).

    [83] D M Zajac, A J Sigillito, M Russ et al. Resonantly driven CNOT gate for electron spins. Science, 359, 439(2018).

    [84] T F Watson, S G J Philips, E Kawakami et al. A programmable two-qubit quantum processor in silicon. Nature, 555, 633(2018).

    [85] M A Nielsen, I L Chuang. Quantum computation and quantum information: 10th Anniversary Edition, 1, 1(2010).

    [86] F Van Riggelen, W I L Lawrie, M Russ et al. Phase flip code with semiconductor spin qubits. npj Quantum information, 8, 12(2022).

    [87] C H Bennett, D P DiVincenzo. Quantum information and computation. Nature, 404, 247(2000).

    [88] S Oh, Y P Shim, J Fei et al. Resonant adiabatic passage with three qubits. Phys Rev A, 87, 022332(2013).

    [89] M J Gullans, J R Petta. Coherent transport of spin by adiabatic passage in quantum dot arrays. Phys Rev B, 102, 155404(2020).

    [90] D Bacon, S T Flammia. Adiabatic gate teleportation. Phys Rev Lett, 103, 120504(2009).

    [91] S Bose. Quantum communication through an unmodulated spin chain. Phys Rev Lett, 91, 207901(2003).

    [92] M Friesen, A Biswas, X D Hu et al. Efficient multiqubit entanglement via a spin bus. Phys Rev Lett, 98, 230503(2007).

    [93] Y P Kandel, H Qiao, S Fallahi et al. Coherent spin-state transfer via Heisenberg exchange. Nature, 573, 553(2019).

    [94] H Qiao, Y P Kandel, S K Manikandan et al. Conditional teleportation of quantum-dot spin states. Nat Commun, 11, 3022(2020).

    [95] I M Georgescu, S Ashhab, F Nori. Quantum simulation. Rev Mod Phys, 86, 153(2014).

    [96] T Byrnes, N Y Kim, K Kusudo et al. Quantum simulation of Fermi−Hubbard models in semiconductor quantum-dot arrays. Phys Rev B, 78, 075320(2008).

    [97] T Hensgens, T Fujita, L Janssen et al. Quantum simulation of a Fermi−Hubbard model using semiconductor quantum dot array. Nature, 548, 70(2017).

    [98] M Imada, A Fujimori, Y Tokura. Metal−insulator transitions. Rev Mod Phys, 70, 1039.

    [99] C A Stafford, S D Sarma. Collective Coulomb blockade in an array of quantum dots: a Mott−Hubbard approach. Phys Rev Lett, 72, 3590(1994).

    [100] Y Nagaoka. Ferromagnetism in a narrow, almost half-filled s band. Phys Rev, 147, 392(1966).

    [101] J P Dehollain, U Mukhopadhyay, V P Michal et al. Nagaoka ferromagnetism observed in a quantum dot plaquette. Nature, 579, 528(2020).

    [102] L Maciej, S Anna, A Veronica et al. Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv Phys, 56, 243(2007).

    [103] G Roati, C D’Errico, L Fallani et al. Anderson localization of a non-interacting Bose−Einstein condensate. Nature, 453, 895(2008).

    [104] B Damski, J Zakrzewski. Mott-insulator phase of the one-dimensional Bose−Hubbard model: a high-order perturbative study. Phys Rev A, 74, 043609(2006).

    [105] S Wessel, F Alet, M Troyer et al. Quantum Monte Carlo simulations of confined bosonic atoms in optical lattices. Phys Rev A, 70, 053615(2004).

    Zheng Zhou, Yixin Li, Zhiyuan Wu, Xinping Ma, Shichang Fan, Shaoyun Huang. The exchange interaction between neighboring quantum dots: physics and applications in quantum information processing[J]. Journal of Semiconductors, 2024, 45(10): 101701
    Download Citation