[1] H A Bhat, F A Khanday, B K Kaushik et al. Quantum computing: fundamentals, implementations and applications. IEEE Open J Nanotechnology, 3, 61(2022).
[2] D P DiVincenzo. The physical implementation of quantum computation. Fortschritte der Physik, 48, 9-11(2000).
[3] I Georgescu. The DiVincenzo criteria 20 years on. Nat Rev Phys, 2, 666(2020).
[4] T Ladd, F Jelezko, R Laflamme et al. Quantum computers. Nature, 464, 45(2010).
[5] S J Wei, H Li, G L Long. A full quantum eigensolver for quantum chemistry simulations. Research, 1, 111(2020).
[6] P W Shor. Algorithms for quantum computation: discrete logarithms and factoring, 124(1994).
[7] L K Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys Rev Lett, 79, 325(1997).
[8] R Hanson, L P Kouwenhoven, J R Petta et al. Spins in few-electron quantum dots. Rev Mod Phys, 79, 1217(2007).
[9] C Kloeffel, D Loss. Prospects for spin-based quantum computing in quantum dots. Annu Rev Condens Matter Phys, 4, 51(2013).
[10] X Zhang, H O Li, K Wang et al. Qubits based on semiconductor quantum dots. Chin Phys B, 27, 020305(2018).
[11] A Chatterjee, P Stevenson, S Franceschi et al. Semiconductor qubits in practice. Nat Rev Phys, 3, 157(2021).
[12] N Wang, B C Wang, G P Guo. New progress of silicon-based semiconductor quantum computation. Acta Phys Sin, 71, 230301(2022).
[13] X Zhang, H O Li, G Cao et al. Semiconductor quantum computation. Natl Sci Rev, 6, 32(2019).
[14] P Barthelemy, L M K Vandersypen. Quantum dot systems: a versatile platform for quantum simulations. Ann Phys, 525, 10-11(2013).
[15] G Burkard, T D Ladd, A Pan et al. Semiconductor spin qubits. Rev Mod Phys, 95, 025003(2023).
[16] J W Mu, S Y Huang, Z H Liu et al. A highly tunable quadruple quantum dot in a narrow bandgap semiconductor InAs nanowire. Nanoscale, 13, 3983(2021).
[17] A M J Zwerver, T Krähenmann, T F Watson et al. Qubits made by advanced semiconductor manufacturing. Nature Electronics, 5, 184(2022).
[18] K Pomorski, P Giounanlis, E Blokhina et al. Analytic view on coupled single-electron lines. Semicond Sci Technol, 34, 125015(2019).
[19] W I L Lawrie, H G J Eenink, N W Hendrickx et al. Quantum dot arrays in silicon and germanium. Appl Phys Lett, 116, 080501(2020).
[20] R Sánchez, Marcos F Gallego, G Platero. Superexchange blockade in triple quantum dots. Phys Rev B, 89, 161402(R)(2014).
[21] H Qiao, Y P Kandel, S Fallahi et al. Long-distance superexchange between semiconductor quantum-dot electron spins. Phys Rev Lett, 126, 017701(2021).
[22] L P Kouwenhoven, D G Austing, S Tarucha et al. Few-electron quantum dots. Rep Prog Phys, 64, 701(2001).
[23] S M Reimann, M Manninen. Electronic structure of quantum dots. Rev Mod Phys, 74, 1283(2002).
[24] D Feng, G J Jin. Condensed matter physics, 1, 1(2013).
[25] W Heitler, F London. Wechselwirkung neutraler atome und homöopolare bindung nach der quantenmechanik. Zeitschrift für Physik, 44, 455(1927).
[26] T Hatano, S Amaha, T Kubo et al. Manipulation of exchange coupling energy in a few-electron double quantum dot. Phys Rev B, 77, 241301(2008).
[27] V W Heisenberg. Mehrkörperproblem und resonanz in der quantenmechanik. Zeitschrift für Physik, 38, 411(1926).
[28] P A Dirac. On the Theory of quantum mechanics. The Royal society, 661(1926).
[29] W J Mullin, G Blaylock. Quantum statistics: Is there an effective fermion repulsion or boson attraction. Am J Phys, 71, 1223(2003).
[30] G H Wannier. Statistical physics, 1, 1(1987).
[31] R B Leighton. Principles of modern physics, 1, 1(1959).
[32] D J Griffiths, D F Schroeter. Introduction to quantum mechanics (third edition), 1, 1(2018).
[33] J Y Zeng. Quantum mechanics (fifth edition), 1, 1(2013).
[34] W G Van der Wiel, M Stopa, T Kodera et al. Semiconductor quantum dots for electron spin qubits. New J Phys, 8, 28(2006).
[35] A L Saraiva, M J Calderón, B Koiller. Reliability of the Heitler−London approach for the exchange coupling between electrons in semiconductor nanostructures. Phys Rev B, 233302(2007).
[36] E K Liu. Semiconductor physics (eighth edition), 1, 1(2023).
[37] G Burkard, D Loss, D P DiVincenzo. Coupled quantum dots as quantum gates. Phys Rev B, 59, 2070(1999).
[38] D P DiVincenzo, D Loss. Quantum information is physical. Superlattices and Microstructures, 23, 420(1998).
[39] M Fanciulli. Electron spin resonance and related phenomena in low dimensional structures, 1, 1(2009).
[40] Y Tokura, D G Austing, S Tarucha. Single-electron tunnelling in two vertically coupled quantum dots. J Phys Condens Matter, 11, 6023(1999).
[41] E A Laird, J M Taylor, D P DiVincenzo et al. Coherent spin manipulation in an exchange-only qubit. Phys Rev B, 82, 075403(2010).
[42] J M Elzerman, R Hanson, J S Greidanus et al. Few-electron quantum dot circuit with integrated charge read out. Phys Rev B, 67, 161308(R)(2003).
[43] M Russ, G Burkard. Three-electron spin qubits. J Phys Condens Matter, 29, 393001(2017).
[44] J Hubbard. Electron correlations in narrow energy bands. Proc R Soc Lond A, 276, 238(1963).
[45] der Wiel W G Van, S De Franceschi, J M Elzerman et al. Electron transport through double quantum dots. Rev Mod Phys, 75, 1(2003).
[46] J Spałek. Theory of unconventional superconductivity in strongly correlated systems: real space pairing and statistically consistent mean-field theory- in perspective. Acta Phys Pol A, 121, 764(2012).
[47] J M Taylor, J R Petta, A C Johnson et al. Relaxation, dephasing, and quantum control of electron spins in double quantum dots. Phys Rev B, 76, 035315(2007).
[48] A P Balachandran, E Ercolessi, G Morandi et al. Hubbard model and anyon superconductivity: a review. Int J Mod Phys B, 4, 2057(1990).
[49] J Spałek. Effect of pair hopping and magnitude of intra-atomic interaction on exchange-mediated superconductivity. Phys Rev B, 37, 533(1988).
[50] S Bravyi, D P DiVincenzo, D Loss. Schrieffer–Wolff transformation for quantum many-body systems. Ann Phys, 326, 2793(2011).
[51] A Assa. Interacting electrons and quantum magnetism, 1, 1(1998).
[52] L DiCarlo, H J Lynch, A C Johnson et al. Differential charge sensing and charge delocalization in a tunable double quantum dot. Phys Rev Lett, 92, 226801(2004).
[53] Y J Hu, H O H Churchill, D J Reilly et al. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nat Nanotechnol, 2, 622(2007).
[54] X M Wang, S Y Huang, J Y Wang et al. A charge sensor integration to tunable double quantum dots on two neighboring InAs nanowires. Nanoscale, 13, 1048(2021).
[55] T K Hsiao, C J van Diepen, U Mukhopadhyay et al. Efficient orthogonal control of tunnel couplings in a quantum dot array. Phys Rev Appl, 13, 054018(2020).
[56] A R Mills, D M Zajac, M J Gullans et al. Shuttling a single charge across a one-dimensional array of silicon quantum dots. Nat Commun, 10, 1063(2019).
[57] X D Hu, S D Sarma. Hilbert-space structure of a solid-state quantum computer: two-electron states of a double-quantum-dot artificial molecule. Phys Rev A, 61, 062301(2000).
[58] H E Ercan, S N Coppersmith, M Friesen. Strong electron−electron interactions in Si/SiGe quantum dots. Phys Rev B, 104, 235302(2021).
[59] D Bellucci, M Rontani, F Troiani et al. Competing mechanisms for singlet−triplet transition in artificial molecules. Phys Rev B, 69, 201308(2004).
[60] G Giavaras, Y Tokura. Probing the singlet−triplet splitting in double quantum dots: implications of the ac field amplitude. Phys Rev B, 100, 195421(2019).
[61] M Stopa, C M Marcus. Magnetic field control of exchange and noise immunity in double quantum dots. Nano Lett, 8, 1778(2008).
[62] S Geyer, B Hetényi, S Bosco et al. Anisotropic exchange interaction of two hole spin qubits. Nat Phys, 1, 1(2024).
[63] Z H Liu, O Entin-Wohlman, A Aharony et al. Control of the two-electron exchange interaction in a nanowire double quantum dot. Phys Rev B, 98, 241303(2018).
[64] D Loss, D P DiVincenzo. Quantum computation with quantum dots. Phys Rev A, 57, 1050(1998).
[65] F H L Koppens, C Buizert, K J Tielrooij et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature, 442, 766(2006).
[66] H Liu, K Wang, F Gao et al. Ultrafast and electrically tunable Rabi frequency in a Germanium hut wire hole spin qubit. Nano Lett, 23, 3810(2023).
[67] S G J Philips, M T Mądzik, S V Amitonov et al. Universal control of a six-qubit quantum processor in silicon. Nature, 609, 919(2022).
[68] J Levy. Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. Phys Rev Lett, 89, 147902(2002).
[69] D DiVincenzo, D Bacon, J Kempe et al. Universal quantum computation with the exchange interaction. Nature, 408, 339(2000).
[70] T Zhang, H Liu, F Cao et al. Anisotropic g-factor and spin−orbit field in a germanium hut wire double quantum dot. Nano Lett, 21, 3835(2021).
[71] J Y Wang, S Y Huang, Z J Lei et al. Measurements of the spin−orbit interaction and Landé g factor in a pure-phase InAs nanowire double quantum dot in the Pauli spin-blockade regime. Appl Phys Lett, 109, 053106(2016).
[72] J R Petta, A C Johnson, J M Taylor et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science, 309, 2180(2005).
[73] M P Wardrop, A C Doherty. Exchange-based two-qubit gate for singlet−triplet qubits. Phys Rev B, 90, 045418(2014).
[74] A C Johnson, J R Petta, J M Taylor et al. Triplet–singlet spin relaxation via nuclei in a double quantum dot. Nature, 435, 925(2005).
[75] J R Prance, Z Shi, C B Simmons et al. Single-shot measurement of triplet−singlet relaxation in a Si/SiGe double quantum dot. Phys Rev Lett, 108, 046808(2012).
[76] A J Weinstein, M D Reed, A M Jones et al. Universal logic with encoded spin qubits in silicon. Nature, 615, 817(2023).
[77] R W Andrews, C Jones, M D Reed et al. Quantifying error and leakage in an encoded Si/SiGe triple-dot qubit. Nat Nanotechnol, 14, 747(2019).
[78] C D Andrew, P W Matthew. Two-qubit gates for resonant exchange qubits. Phys Rev Lett, 111, 050503(2013).
[79] J Medford, J Beil, J M Taylor et al. Self-consistent measurement and state tomography of an exchange-only spin qubit. Nat Nanotechnol, 8, 654(2013).
[80] L Petit, M Russ, G H G J Eenink et al. Design and integration of single-qubit rotations and two-qubit gates in silicon above one kelvin. Commun Mater, 3, 82(2022).
[81] D Q L Nguyen, I Heinz, G Burkard. Quantum gates with oscillating exchange interaction. Quantum Science and Technology, 9, 0150,20(2024).
[82] A J Sigillito, M J Gullans, L F Edge et al. Coherent transfer of quantum information in a silicon double quantum dot using resonant SWAP gates. npj Quantum Information, 5, 110(2019).
[83] D M Zajac, A J Sigillito, M Russ et al. Resonantly driven CNOT gate for electron spins. Science, 359, 439(2018).
[84] T F Watson, S G J Philips, E Kawakami et al. A programmable two-qubit quantum processor in silicon. Nature, 555, 633(2018).
[85] M A Nielsen, I L Chuang. Quantum computation and quantum information: 10th Anniversary Edition, 1, 1(2010).
[86] F Van Riggelen, W I L Lawrie, M Russ et al. Phase flip code with semiconductor spin qubits. npj Quantum information, 8, 12(2022).
[87] C H Bennett, D P DiVincenzo. Quantum information and computation. Nature, 404, 247(2000).
[88] S Oh, Y P Shim, J Fei et al. Resonant adiabatic passage with three qubits. Phys Rev A, 87, 022332(2013).
[89] M J Gullans, J R Petta. Coherent transport of spin by adiabatic passage in quantum dot arrays. Phys Rev B, 102, 155404(2020).
[90] D Bacon, S T Flammia. Adiabatic gate teleportation. Phys Rev Lett, 103, 120504(2009).
[91] S Bose. Quantum communication through an unmodulated spin chain. Phys Rev Lett, 91, 207901(2003).
[92] M Friesen, A Biswas, X D Hu et al. Efficient multiqubit entanglement via a spin bus. Phys Rev Lett, 98, 230503(2007).
[93] Y P Kandel, H Qiao, S Fallahi et al. Coherent spin-state transfer via Heisenberg exchange. Nature, 573, 553(2019).
[94] H Qiao, Y P Kandel, S K Manikandan et al. Conditional teleportation of quantum-dot spin states. Nat Commun, 11, 3022(2020).
[95] I M Georgescu, S Ashhab, F Nori. Quantum simulation. Rev Mod Phys, 86, 153(2014).
[96] T Byrnes, N Y Kim, K Kusudo et al. Quantum simulation of Fermi−Hubbard models in semiconductor quantum-dot arrays. Phys Rev B, 78, 075320(2008).
[97] T Hensgens, T Fujita, L Janssen et al. Quantum simulation of a Fermi−Hubbard model using semiconductor quantum dot array. Nature, 548, 70(2017).
[98] M Imada, A Fujimori, Y Tokura. Metal−insulator transitions. Rev Mod Phys, 70, 1039.
[99] C A Stafford, S D Sarma. Collective Coulomb blockade in an array of quantum dots: a Mott−Hubbard approach. Phys Rev Lett, 72, 3590(1994).
[100] Y Nagaoka. Ferromagnetism in a narrow, almost half-filled s band. Phys Rev, 147, 392(1966).
[101] J P Dehollain, U Mukhopadhyay, V P Michal et al. Nagaoka ferromagnetism observed in a quantum dot plaquette. Nature, 579, 528(2020).
[102] L Maciej, S Anna, A Veronica et al. Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv Phys, 56, 243(2007).
[103] G Roati, C D’Errico, L Fallani et al. Anderson localization of a non-interacting Bose−Einstein condensate. Nature, 453, 895(2008).
[104] B Damski, J Zakrzewski. Mott-insulator phase of the one-dimensional Bose−Hubbard model: a high-order perturbative study. Phys Rev A, 74, 043609(2006).
[105] S Wessel, F Alet, M Troyer et al. Quantum Monte Carlo simulations of confined bosonic atoms in optical lattices. Phys Rev A, 70, 053615(2004).