• Photonics Research
  • Vol. 5, Issue 4, 293 (2017)
Ekaterina I. Gacheva1, Anatoly K. Poteomkin1, Sergey Yu. Mironov1, Viktor V. Zelenogorskii1, Efim A. Khazanov1、2, Konstantin B. Yushkov2、*, Alexander I. Chizhikov2, and Vladimir Ya. Molchanov2
Author Affiliations
  • 1Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), 46 Ulyanov Street, Nizhny Novgorod 603950, Russia
  • 2National University of Science and Technology “MISIS,” 4 Leninsky Prospekt, Moscow 119049, Russia
  • show less
    DOI: 10.1364/PRJ.5.000293 Cite this Article Set citation alerts
    Ekaterina I. Gacheva, Anatoly K. Poteomkin, Sergey Yu. Mironov, Viktor V. Zelenogorskii, Efim A. Khazanov, Konstantin B. Yushkov, Alexander I. Chizhikov, Vladimir Ya. Molchanov. Fiber laser with random-access pulse train profiling for a photoinjector driver[J]. Photonics Research, 2017, 5(4): 293 Copy Citation Text show less
    Simplified block diagram of the photocathode laser driver. FA1, FA2, FA3, fiber amplifiers; HG, harmonic generator; SYNC, electronic synchronization unit; OSC, digital oscilloscope; PC, computer; AWG, arbitrary waveform generator; GEN, RF generator. Yellow on black are radiation oscillograms; blue on white are temporal transmission profiles of the scheme elements. Dashed blocks (non-fiber elements) are under development in the described laser system.
    Fig. 1. Simplified block diagram of the photocathode laser driver. FA1, FA2, FA3, fiber amplifiers; HG, harmonic generator; SYNC, electronic synchronization unit; OSC, digital oscilloscope; PC, computer; AWG, arbitrary waveform generator; GEN, RF generator. Yellow on black are radiation oscillograms; blue on white are temporal transmission profiles of the scheme elements. Dashed blocks (non-fiber elements) are under development in the described laser system.
    AOM synchronization diagram: (a) output intensity of the MO; (b) output voltage envelope of the AOM driver; (c) AOM transmission; (d) radiation intensity at the AOM output.
    Fig. 2. AOM synchronization diagram: (a) output intensity of the MO; (b) output voltage envelope of the AOM driver; (c) AOM transmission; (d) radiation intensity at the AOM output.
    Macropulse envelope at the second fiber amplifier output: “W/o correction,” rectangular input macropulse; “Correction,” precompensated input macropulse.
    Fig. 3. Macropulse envelope at the second fiber amplifier output: “W/o correction,” rectangular input macropulse; “Correction,” precompensated input macropulse.
    Average micropulse energy inside pulse train dependence on pump control current at the second fiber amplifier output: “W/o correction,” rectangular input macropulse; “Correction,” precompensated input macropulse, rectangular output macropulse; “Continuous input,” a continuous chain of micropulses at the amplifier input.
    Fig. 4. Average micropulse energy inside pulse train dependence on pump control current at the second fiber amplifier output: “W/o correction,” rectangular input macropulse; “Correction,” precompensated input macropulse, rectangular output macropulse; “Continuous input,” a continuous chain of micropulses at the amplifier input.
    Ekaterina I. Gacheva, Anatoly K. Poteomkin, Sergey Yu. Mironov, Viktor V. Zelenogorskii, Efim A. Khazanov, Konstantin B. Yushkov, Alexander I. Chizhikov, Vladimir Ya. Molchanov. Fiber laser with random-access pulse train profiling for a photoinjector driver[J]. Photonics Research, 2017, 5(4): 293
    Download Citation