• Photonics Research
  • Vol. 9, Issue 5, 887 (2021)
Miao Zhang1、†, Haijun Kang1、†, Meihong Wang1、2, Fengyi Xu1, Xiaolong Su1、2、*, and Kunchi Peng1、2
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
  • 2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • show less
    DOI: 10.1364/PRJ.418417 Cite this Article Set citation alerts
    Miao Zhang, Haijun Kang, Meihong Wang, Fengyi Xu, Xiaolong Su, Kunchi Peng. Quantifying quantum coherence of optical cat states[J]. Photonics Research, 2021, 9(5): 887 Copy Citation Text show less
    References

    [1] T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, S. Glancy. Quantum computation with optical coherent states. Phys. Rev. A, 68, 042319(2003).

    [2] H. Jeong, M. S. Kim. Efficient quantum computation using coherent states. Phys. Rev. A, 65, 042305(2002).

    [3] A. P. Lund, T. C. Ralph, H. L. Haselgrove. Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett., 100, 030503(2008).

    [4] S. L. Braunstein, H. J. Kimble. Teleportation of continuous quantum variables. Phys. Rev. Lett., 80, 869-872(1998).

    [5] S. J. van Enk, O. Hirota. Entangled coherent states: teleportation and decoherence. Phys. Rev. A, 64, 022313(2001).

    [6] P. van Loock, N. Lütkenhaus, W. J. Munro, K. Nemoto. Quantum repeaters using coherent-state communication. Phys. Rev. A, 78, 062319(2008).

    [7] A. Gilchrist, K. Nemoto, W. J. Munro, T. C. Ralph, S. Glancy, S. L. Braunstein, G. J. Milburn. Schrödinger cats and their power for quantum information processing. J. Opt. B, 6, S828-S833(2004).

    [8] M. Dakna, T. Anhut, T. Opatrný, L. Knöll, D.-G. Welsch. Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter. Phys. Rev. A, 55, 3184-3194(1997).

    [9] A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, P. Grangier. Generating optical Schrödinger kittens for quantum information processing. Science, 312, 83-86(2006).

    [10] J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, E. S. Polzik. Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett., 97, 083604(2006).

    [11] K. Wakui, H. Takahashi, A. Furusawa, M. Sasaki. Photon subtracted squeezed states generated with periodically poled KTiOPO4. Opt. Express, 15, 3568-3574(2007).

    [12] W. Asavanant, K. Nakashima, Y. Shiozawa, J.-I. Yoshikawa, A. Furusawa. Generation of highly pure Schrödinger’s cat states and real-time quadrature measurements via optical filtering. Opt. Express, 25, 32227-32242(2017).

    [13] T. Serikawa, J.-I. Yoshikawa, S. Takeda, H. Yonezawa, T. C. Ralph, E. H. Huntington, A. Furusawa. Generation of a cat state in an optical sideband. Phys. Rev. Lett., 121, 143602(2018).

    [14] H. Takahashi, K. Wakui, S. Suzuki, M. Takeoka, K. Hayasaka, A. Furusawa, M. Sasaki. Generation of large-amplitude coherent-state superposition via ancilla-assisted photon subtraction. Phys. Rev. Lett., 101, 233605(2008).

    [15] T. Gerrits, S. Glancy, T. S. Clement, B. Calkins, A. E. Lita, A. J. Miller, A. L. Migdall, S. W. Nam, R. P. Mirin, E. Knill. Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum. Phys. Rev. A, 82, 031802(2010).

    [16] A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri, P. Grangier. Generation of optical ‘Schrödinger cats’ from photon number states. Nature, 448, 784-786(2007).

    [17] J. Etesse, M. Bouillard, B. Kanseri, R. Tualle-Brouri. Experimental generation of squeezed cat states with an operation allowing iterative growth. Phys. Rev. Lett., 114, 193602(2015).

    [18] K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E. Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, J. Laurat. Optical synthesis of large-amplitude squeezed coherent-state superpositions with minimal resources. Phys. Rev. Lett., 115, 023602(2015).

    [19] N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, A. Furusawa. Teleportation of nonclassical wave packets of light. Science, 332, 330-333(2011).

    [20] J. S. Neergaard-Nielsen, Y. Eto, C.-W. Lee, H. Jeong, M. Sasaki. Quantum tele-amplification with a continuous-variable superposition state. Nat. Photonics, 7, 439-443(2013).

    [21] H. Jeong, A. Zavatta, M. Kang, S.-W. Lee, L. S. Costanzo, S. Grandi, T. C. Ralph, M. Bellini. Generation of hybrid entanglement of light. Nat. Photonics, 8, 564-569(2014).

    [22] O. Morin, K. Huang, J. Liu, H. L. Jeannic, C. Fabre, J. Laurat. Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nat. Photonics, 8, 570-574(2014).

    [23] A. E. Ulanov, D. Sychev, A. A. Pushkina, I. A. Fedorov, A. I. Lvovsky. Quantum teleportation between discrete and continuous encodings of an optical qubit. Phys. Rev. Lett., 118, 160501(2017).

    [24] D. V. Sychev, A. E. Ulanov, E. S. Tiunov, A. A. Pushkina, A. Kuzhamuratov, V. Novikov, A. I. Lvovsky. Entanglement and teleportation between polarization and wave-like encodings of an optical qubit. Nat. Commun., 9, 3672(2018).

    [25] D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. Richards, I. A. Fedorow, A. I. Lvovsky. Enlargement of optical Schrödinger’s cat states. Nat. Photonics, 11, 379-382(2017).

    [26] A. Tipsmark, R. Dong, A. Laghaout, P. Marek, M. Ježek, U. L. Andersen. Experimental demonstration of a Hadamard gate for coherent state qubits. Phys. Rev. A, 84, 050301(2011).

    [27] A. Streltsov, G. Adesso, M. B. Plenio. Colloquium: quantum coherence as a resource. Rev. Mod. Phys., 89, 041003(2017).

    [28] T. Baumgratz, M. Cramer, M. B. Plenio. Quantifying coherence. Phys. Rev. Lett., 113, 140401(2014).

    [29] D. Girolami. Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett., 113, 170401(2014).

    [30] J. Xu. Quantifying coherence of Gaussian states. Phys. Rev. A, 93, 032111(2016).

    [31] Y.-R. Zhang, L.-H. Shao, Y. Li, H. Fan. Quantifying coherence in infinite-dimensional systems. Phys. Rev. A, 93, 012334(2016).

    [32] A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, G. Adesso. Measuring quantum coherence with entanglement. Phys. Rev. Lett., 115, 020403(2015).

    [33] K. C. Tan, H. Jeong. Entanglement as the symmetric portion of correlated coherence. Phys. Rev. Lett., 121, 220401(2018).

    [34] K. Bu, N. Anand, U. Singh. Asymmetry and coherence weight of quantum states. Phys. Rev. A, 97, 032342(2018).

    [35] M. Lostaglio, M. P. Müller. Coherence and asymmetry cannot be broadcast. Phys. Rev. Lett., 123, 020403(2019).

    [36] E. Bagan, J. A. Bergou, S. S. Cottrell, M. Hillery. Relations between coherence and path information. Phys. Rev. Lett., 116, 160406(2016).

    [37] K.-D. Wu, Z. Hou, H.-S. Zhong, Y. Yuan, G.-Y. Xiang, C.-F. Li, G.-C. Guo. Experimentally obtaining maximal coherence via assisted distillation process. Optica, 4, 000454(2017).

    [38] W. Zheng, Z. Ma, H. Wang, S.-M. Fei, X. Peng. Experimental demonstration of observability and operability of robustness of coherence. Phys. Rev. Lett., 120, 230504(2018).

    [39] Y. Yuan, Z. Hou, Y.-Y. Zhao, H.-S. Zhong, G.-Y. Xiang, C.-F. Li, G.-C. Guo. Experimental demonstration of wave-particle duality relation based on coherence measure. Opt. Express, 26, 004470(2018).

    [40] W.-M. Lv, C. Zhang, X.-M. Hu, H. Cao, J. Wang, Y.-F. Huang, B.-H. Liu, C.-F. Li, G.-C. Guo. Experimental test of the trade-off relation for quantum coherence. Phys. Rev. A, 98, 062337(2018).

    [41] J. Gao, Z.-Q. Jiao, C.-Q. Hu, L.-F. Qiao, R.-J. Ren, H. Tang, Z.-H. Ma, S.-M. Fei, V. Vedral, X.-M. Jin. Experimental test of the relation between coherence and path information. Commun. Phys., 1, 89(2018).

    [42] C. Zhang, T. R. Bromley, Y.-F. Huang, H. Cao, W.-M. Lv, B.-H. Liu, C.-F. Li, G.-C. Guo, M. Cianciaruso, G. Adesso. Demonstrating quantum coherence and metrology that is resilient to transversal noise. Phys. Rev. Lett., 123, 180504(2019).

    [43] K.-D. Wu, Z. Hou, G.-Y. Xiang, C.-F. Li, G.-C. Guo, D. Dong, F. Nori. Detecting non-Markovianity via quantified coherence: theory and experiments. npj Quantum Inf., 6, 55(2020).

    [44] A. Smirne, T. Nitsche, D. Egloff, S. Barkhofen, S. De, I. Dhand, C. Silberhorn, S. F. Huelga, M. B. Plenio. Experimental control of the degree of non-classicality via quantum coherence. Quantum Sci. Technol., 5, 04LT01(2020).

    [45] Y. Yuan, Z. Hou, J.-F. Tang, A. Streltsov, G.-Y. Xiang, C.-F. Li, G.-C. Guo. Direct estimation of quantum coherence by collective measurements. npj Quantum Inf., 6, 46(2020).

    [46] H. Xu, F. Xu, T. Theurer, D. Egloff, Z.-W. Liu, N. Yu, M. B. Plenio, L. Zhang. Experimental quantification of coherence of a tunable quantum detector. Phys. Rev. Lett., 125, 060404(2020).

    [47] M. Hillery. Coherence as a resource in decision problems: the Deutsch-Jozsa algorithm and a variation. Phys. Rev. A, 93, 012111(2016).

    [48] H.-L. Shi, S.-Y. Liu, X.-H. Wang, W.-L. Yang, Z.-Y. Yang, H. Fan. Coherence depletion in the Grover quantum search algorithm. Phys. Rev. A, 95, 032307(2017).

    [49] K. C. Tan, T. Volkoff, H. Kwon, H. Jeong. Quantifying the coherence between coherent states. Phys. Rev. Lett., 119, 190405(2017).

    [50] H. Le Jeannic, A. Cavaillès, K. Huang, R. Filip, J. Laurat. Slowing quantum decoherence by squeezing in phase space. Phys. Rev. Lett., 120, 073603(2018).

    [51] A. Serafini, S. D. Siena, F. Illuminati, M. G. A. Paris. Minimum decoherence cat-like states in Gaussian noisy channels. J. Opt. B, 6, S591-S596(2004).

    [52] S. Glancy, H. M. Vasconcelos, T. C. Ralph. Transmission of optical coherent-state qubits. Phys. Rev. A, 70, 022317(2004).

    [53] K. C. Tan, S. Choi, H. Jeong. Negativity of quasiprobability distributions as a measure of nonclassicality. Phys. Rev. Lett., 124, 110404(2020).

    [54] A. I. Lvovsky, M. G. Raymer. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys., 81, 299-332(2009).

    [55] J. S. Neergaard-Nielsen. Generation of single photons and Schrödinger kitten states of light(2008).

    CLP Journals

    [1] Haijun Kang, Dongmei Han, Na Wang, Yang Liu, Shuhong Hao, Xiaolong Su. Experimental demonstration of robustness of Gaussian quantum coherence[J]. Photonics Research, 2021, 9(7): 1330

    Miao Zhang, Haijun Kang, Meihong Wang, Fengyi Xu, Xiaolong Su, Kunchi Peng. Quantifying quantum coherence of optical cat states[J]. Photonics Research, 2021, 9(5): 887
    Download Citation