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The optical cat state plays an essential role in quantum computation and quantum metrology. Here, we exper-
imentally quantify quantum coherence of an optical cat state by means of relative entropy and the l 1 norm of
coherence in a Fock basis based on the prepared optical cat state at the rubidium D1 line. By transmitting the
optical cat state through a lossy channel, we also demonstrate the robustness of quantum coherence of the optical
cat state in the presence of loss, which is different from the decoherence properties of fidelity andWigner function
negativity of the optical cat state. Our results confirm that quantum coherence of optical cat states is robust
against loss and pave the way for the application of optical cat states. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.418417

1. INTRODUCTION

As a superposition of two coherent states, the optical cat state is
an important quantum resource for quantum information
processing, including quantum computation [1–3], quantum
teleportation [4–6], and quantum metrology [7]. An optical
cat state can be experimentally prepared by photon subtraction
from a squeezed vacuum state [8–13]. It has been shown that
the amplitude of optical cat states can be increased by time-
separated two-photon subtraction [14] and three-photon sub-
traction [15]. Meanwhile, optical squeezed cat states are
generated by different means [16–18]. Based on the prepared
optical cat states, several applications have been experimentally
demonstrated, including quantum teleportation of cat states
[19], tele-amplification [20], preparation of hybrid entangled
states and teleportation based on it [21–24], amplification
of cat states [25], and the Hadamard gate [26].

Quantum coherence, which encapsulates the idea of super-
position of quantum states, is a defining feature of quantum
mechanics and plays a key role in applications of quantum
physics and quantum information [27]. The resource theory
of quantum coherence has attracted considerable interest re-
cently [28–36]. The relations between quantum coherence
and other quantum resources are extensively discussed, such
as entanglement [32,33], asymmetry [34,35], and path infor-
mation [36]. Several experiments related to quantum coherence
have been demonstrated, including obtainment of maximal co-
herence via an assisted distillation process [37], observability
and operability of robustness of coherence [38], wave-particle

duality relation based on coherence measurement [39], the
trade-off relation for quantum coherence [40], the relation be-
tween coherence and path information [41], the resilience ef-
fect of quantum coherence to transversal noise [42], the relation
between quantum non-Markovianity and coherence [43], ex-
perimental control of the degree of non-classicality via quan-
tum coherence [44], estimation of quantum coherence by
collective measurements [45], and quantification of coherence
of a tunable quantum detector [46]. The roles of quantum co-
herence in the Deutsch–Jozsa algorithm [47] and Grover quan-
tum search algorithm [48] have also been discussed recently.

For application, it is crucial to quantify quantum coherence
of various quantum states expressed in finite and infinite di-
mensional systems [28–31]. Very recently, Tan et al. proposed
an approach to quantify the coherence between coherent states
based on the Glauber–Sudarshan P distribution [49], which
can be used to quantify quantum coherence of the cat state.
For the preparation of a cat state, the density matrix in a
Fock basis can be obtained directly in the process of quantum
tomography. Thus, it is convenient to quantify quantum coher-
ence of cat states in a Fock basis. At the same time, it has been
shown that the Wigner function negativity of the optical cat
state is sensitive to loss [50,51]. However, the effect of loss
on the quantum coherence of optical cat states is unclear. As
a consequence, it is essential to investigate the evolution of
quantum coherence of cat states in the presence of loss.

In this paper, we prepare an optical cat state at the rubidium
D1 line, which is a crucial medium for quantum memory.
Then we experimentally demonstrate quantification of
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quantum coherence of the optical cat state in a Fock basis by
relative entropy and the l1 norm calculated from the density
matrix. Finally, the evolution of quantum coherence of the op-
tical cat state in a lossy channel is investigated. By transmitting
the prepared optical cat state with amplitude of 1.06 and fidel-
ity of 0.68 through a lossy channel, we show that quantum
coherence of the cat state is robust against loss. Comparing with
the fidelity and Wigner function negativity of the cat state in a
lossy channel, we show that when the fidelity is below 0.5 and
the negativity disappears, the quantum coherence of the cat
state still exists. The presented results provide a useful reference
for the application of the optical cat state.

2. PRINCIPLE AND EXPERIMENTAL SETUP

The relative entropy of quantum coherence refers to the dis-
tance between quantum states ρ̂ and ρ̂diag formed from the
diagonal elements of ρ̂ [28], which is given by

C rel:ent:�ρ̂� � S�ρ̂diag� − S�ρ̂�, (1)

where S is the von Neumann entropy, defined by S�ρ̂� �
−Tr�ρ̂log2ρ̂�.

The l1 norm of quantum coherence depends on the
magnitudes of off-diagonal density matrix elements [28], given
by

Cl 1�ρ̂� �
X
m, n
m≠n

jρm,nj: (2)

For a cat state, generally, it is represented in an infinite di-
mensional Fock basis. But in experiment, the obtained density
matrix of the cat state is truncated in a finite dimension by
performing quantum state tomography. Thus, the relative en-
tropy and l 1 norm in a Fock basis can be applied to quantify the
quantum coherence of cat states.

A schematic of the decoherence process of an optical odd cat
state in a lossy channel is shown in Fig. 1(a). An ideal odd cat
state has an obvious Wigner function negativity and quantum
interference between two coherent states. When it is transmit-
ted through a lossy channel with 50% transmission efficiency,
the Wigner function negativity and quantum interference dis-
appear, and the distance of two coherent states is shortened.

When an ideal cat state with amplitude of α is transmitted
through a lossy channel with a transmission efficiency of η, its
density matrix can be expressed as [52]

ρ̂�α, η� � �1 − P��ρ̂�
� ffiffiffi

η
p

α
�
� P�ρ̂�

� ffiffiffi
η

p
α
�
, (3)

where P� � N�� ffiffiηp
α�

2N��α� �1 − e−2�1−η�α2 	 is a probability of the ini-
tial even (odd) cat state converted to an odd (even) cat state,
ρ̂�� ffiffiffi

η
p

α�� 1
N��

ffiffi
η

p
α��j

ffiffiffi
η

p
αi�j− ffiffiffi

η
p

αi��h ffiffiffi
η

p
αj�h− ffiffiffi

η
p

αj� is
the density matrix of an even (odd) cat state with an amplitude
of

ffiffiffi
η

p
α, and N��α� � 2�1� e−2α2� is the normalization fac-

tor. According to the density matrix, we can directly calculate
the quantum coherence of the cat state in a lossy channel based
on relative entropy and the l1 norm. The relative entropy and
l 1 norm of quantum coherence for the odd cat state are
given by

C rel:ent:�α, η� � �1 − P−�Codd
rel:ent:�

ffiffiffi
η

p
α� � P−C even

rel:ent:�
ffiffiffi
η

p
α�,
(4)

Cl1�α, η� � �1 − P−�Codd
l1

� ffiffiffi
η

p
α� � P−C even

l1
� ffiffiffi

η
p

α�, (5)

respectively. The Codd
rel:ent:�

ffiffiffi
η

p
α� and C even

rel:ent:�
ffiffiffi
η

p
α� are the rel-

ative entropy of coherence of the odd cat state and the even cat
state with amplitude of

ffiffiffi
η

p
α, respectively. The Codd

l 1
� ffiffiffi

η
p

α� and
C even

l1
� ffiffiffi

η
p

α� are the l 1 norm of coherence of the odd cat state
and even cat state with amplitude of

ffiffiffi
η

p
α, respectively. The

expressions of quantum coherence of the odd and even cat
states can be found in Appendix B.

Usually, the fidelity and Wigner function negativity are used
to characterize a cat state. The fidelity of the odd cat state refers
to the overlap between the quantum state ρ̂ and an ideal odd cat
state ρ̂− and can be defined as F � Tr�ρ̂ρ̂−	. The fidelity of the
odd cat state in a lossy channel is given by

F � cosh�−α2�1 − η�	 sinh ηα2

sinh α2
, (6)

which is obtained by calculating the overlap between the out-
put state transmitting through the lossy channel and an ideal
odd cat state ρ̂−� ffiffiffi

η
p

α�. The negativity of the Wigner function
shows the nonclassical character of a quantum state [53]. It is
denoted as the minimum of Wigner functionW �x, p�, where x
and p are the position and momentum parameters in phase
space, respectively. The negativity of the odd cat state in a lossy
channel is denoted as

WN � minf0,W �0,0�g, (7)

where W �0,0� � 1
πN −

e−2α2η�2 − 2e−2α2�1−2η�	.

Fig. 1. (a) Illustration of the decoherence process of optical cat state
in phase space. An ideal optical odd cat state with amplitude α � 1
transmits through a lossy channel with transmission efficiency of 50%,
and the Wigner functions are displayed before and after transmission.
(b) Experimental setup. A lossy channel consists of a half-wave plate
(HWP) and a polarization beam splitter (PBS). OPA, optical param-
eter amplification with cavity length of 480 mm; SHG, second har-
monic generator with cavity length of 480 mm; IF, interference filter
(0.4 nm); FC, filter cavity with cavity length of 0.75 mm; FC2, filter
cavity with cavity length of 2.05 mm; HD, homodyne detector; LO,
local oscillator; APD, avalanche photodiode.
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The schematic of our experimental setup is shown in
Fig. 1(b). A continuous wave single frequency Ti:sapphire laser
operated at 795 nm corresponding to the rubidium D1 line is
used as the light source. A squeezed vacuum state with −3 dB
squeezing is generated by a frequency-degenerate optical
parameter amplifier (OPA) that contains a periodically poled
KTiOPO4 (PPKTP) crystal with a pump power of 25 mW.
By subtracting a photon from the squeezed state through a
beam splitter with a transmissivity of 5%, an optical cat state
is experimentally prepared, which is measured by a homodyne
detector when a photon is detected by an avalanche photodiode
(APD) in the trigger path. The generation rate of the cat state is
around 2 kHz (the maximum dark count is 60 Hz). We take
50,000 photocurrents to obtain the density matrix in a Fock
basis with a photon number cutoff of 11 using the iterative
maximum-likelihood algorithm [54] corrected for 80% detec-
tion efficiency. The Wigner function of the cat state is recon-
structed from the density matrix. More details of the
experimental parameters can be found in Appendix A.

3. RESULTS

An optical cat state with amplitude of 1.06� 0.01 and fidelity
of 0.68� 0.01 is prepared in our experiment; the correspond-
ing Wigner function, projection of the Wigner function, and

absolute values of the density matrix elements in the Fock basis
are shown in Figs. 2(a), 2(e), and 2(i), respectively. In Fig. 2(a),
we can see the obvious quantum interference between two co-
herent states and a negative value of the Wigner function,
which is −0.16.

The decoherence of the prepared cat state transmitting
through a lossy channel with transmission efficiencies of
80%, 60%, and 40% is shown in Fig. 2. We can find the
Wigner functions are clearly varied with the loss. The Wigner
functions’ negativity decreases with the decrease in transmission
efficiency, and it disappears when the transmission efficiencies
are 60% and 40%. The phase space distance between the two
coherent states (jαi and j − αi) becomes smaller with the de-
crease in transmission efficiency. In Figs. 2(i)–2(l), it is obvious
that the probability of Fock state j1ih1j decreases and the prob-
ability of vacuum state j0ih0j increases with the decrease in
transmission efficiency.

Quantum coherence of the prepared cat state is quantified
by relative entropy and the l1 norm according to Eqs. (1) and
(2), which are 0.63 and 1.67, respectively. The dependence of
quantum coherence (including relative entropy and the l1
norm), fidelity, and negativity of the Wigner function of the
output states on transmission efficiency for the prepared cat
state (red solid curve) and an ideal cat state (black dashed curve)

Fig. 2. Experimental results. (a)–(d) Wigner functions W �x, p�, (e)–(h) projections, and (i)–(l) absolute values of the density matrix elements in
the Fock basis when the transmission efficiencies are 100%, 80%, 60%, and 40%, respectively. All the results are corrected for 80% detection
efficiency. Only the subspace up to seven photons is shown.
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with amplitude of 1.06 is shown in Figs. 3(a)–3(d), respectively.
The relative entropy, l1 norm, and fidelity of the cat state all
decrease with the decrease in transmission efficiency. The neg-
ativity tends to zero with the decrease in transmission efficiency.
It is interesting that the coherence still exists when the fidelity is
lower than 0.5 [corresponding to negativity equal to zero for
ideal cat states, dotted line in Fig. 3(c)] and negativity disap-
pears, which confirms the quantum coherence is robust
against loss.

As shown in Fig. 3, the theoretical curves of the experimen-
tally prepared cat state and an ideal cat state with the same am-
plitude are different, which is because of the difference between
the prepared cat state and an ideal cat state. The curve of the
relative entropy of coherence of the prepared cat state is lower
than that of the ideal cat state. However, the curve of the l 1
norm of coherence of the prepared cat state is higher than that
of the ideal cat state. This means that the quantification of
quantum coherence of an optical cat state is a little bit different
using the relative entropy and l1 norm of coherence. However,
the evolution trends of quantum coherence of the optical cat
state quantified by these two means are the same in a lossy
channel.

4. CONCLUSION

In summary, we experimentally prepare an optical cat state with
amplitude of 1.06 and fidelity of 0.68 at the rubidium D1 line.
Then we quantify quantum coherence of the cat state by the
relative entropy and l 1 norm in the Fock basis. The quantum
coherence, fidelity, and Wigner function negativity of the op-
tical cat state in a lossy channel are compared. The experimental
results show that quantum coherence of an optical cat state is a
robust quantum resource in a lossy environment, since it still
exists when the Wigner function negativity of the cat state dis-
appears. We show that the evolution trends of quantum coher-
ence of cat states with relative entropy and the l1 norm are the

same. Our results are a step closer to applications based on the
quantum coherence of cat states.

APPENDIX A: DETAILS OF EXPERIMENT

A solid-state titanium-sapphire continuous wave laser generates
a 795 nm light source corresponding to the rubidium D1 line,
which is divided into two parts. The first part is injected into a
second harmonic generator (SHG) cavity with a cavity length
of 480 mm, which contains two concave mirrors
(R � 50 mm), a high reflectivity mirror, a plane mirror
with transmissivity of 8%, and a PPKTP (1mm × 2mm ×
10 mm) crystal. The second part passes through the model
cleaner and is divided into the local oscillator of a homodyne
detector and signal beam of a frequency degenerate OPA. The
signal beam is periodically chopped by two acousto-optic mod-
ulators (AOMs), which defines distinct time bins by the pres-
ence and absence of the signal beam, and thus enables the
alternate sequence of locking and photon counting without
the signal beam. When the signal beam is absent, we generate
a nearly pure squeezed vacuum state with −3 dB squeezing by
an OPA with a cavity length of 480 mm, which contains two
concave mirrors (R � 50 mm), a high reflectivity mirror, a
plane mirror with transmissivity of 12.5%, and a PPKTP crys-
tal. The OPA works on the parametric amplification status in
our experiment, which is guaranteed by locking the relative
phase between the pump beam and signal beam to zero.

A beam splitter composed of a half-wave plate and a polari-
zation beam splitter (PBS) transmits 5% of the squeezed vac-
uum state toward an APD through a filtering system for photon
counting. The filter system consists of an interference filter
(0.4 nm) and two filter cavities with fineness of 1200, whose
cavity lengths are 0.75 mm and 2.05 mm.

The reflected beam by the beam splitter is measured by a
homodyne detector when a photon is detected by the APD.
The bandwidth of the homodyne detector is 30 MHz and
the detection efficiency is about 80%, which includes four
parts: interference efficiency between the signal light and local
light (98.5%), quantum efficiency of photodiodes (92%,
S3883), 19 dB clearance with the 16 mW local oscillator at
13 MHz of the homodyne detector (corresponding to equiv-
alent efficiency 98.7%), and transmission efficiency (91%).
Using the maximum likelihood algorithm, we obtain the den-
sity matrix and the associated Wigner function.

APPENDIX B: QUANTUM COHERENCE OF CAT
STATES

Optical cat states can be expressed as a quantum superposition
of two coherent states:

jΨi � 1ffiffiffiffiffiffiffiffiffi
N�p �jαi � j − αi�, (B1)

where N� � 2�1� e−2jαj2� are the normalization factors, and
� and − correspond to the even and odd cat states, respectively.
Even and odd cat states can be expressed in a Fock basis as [55]

jΨ�i �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh jαj2
p X∞

n�0

αnffiffiffiffi
n!

p δ�2	0njni, (B2)

Fig. 3. Dependence of relative entropy, l 1 norm, fidelity, and neg-
ativity of cat states on the transmission efficiency. The red solid curve
and black dashed curve correspond to the experimentally prepared cat
state and the ideal cat state, respectively. The blue dots represent the
experimental results.
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jΨ−i �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh jαj2
p X∞

n�0

αnffiffiffiffi
n!

p δ�2	1njni, (B3)

respectively. δ�2	0n � 0, δ�2	1n � 1 when n is odd and δ�2	0n � 1,
δ�2	1n � 0 when n is even.

Although an ideal cat state is expressed in the infinite di-
mensional Fock basis, it can be expressed in the finite dimen-
sion when the density matrix can characterize the information
of the cat state. For example, the odd cat state with amplitude
of 1.3 is represented by a density matrix with 11 dimensions
[10], and the even cat state with amplitude of 1.61 is repre-
sented by a density matrix with 10 dimensions [14]. For an
odd cat state with amplitude of α, the density matrix elements
are expressed as 1

sinh jαj2
αm�nffiffiffiffiffiffi
m!n!

p δ�2	1mδ
�2	
1n, and the probability of

the pjnihnj is
1

sinh jαj2
α2n

n! δ
�2	
1n. In the experiment, it is truncated

to dimension d (corresponding to a photon-number cutoff
of d − 1 ) when the probability of higher photons (d ,…,∞)
is small enough to be ignored (e.g., 10−3).

Considering d -dimensional Hilbert space, the relative
entropy of coherence of the even and odd cat states can be
expressed as

C even
rel:ent:�α� �

1

cosh jαj2
 Xd−1

n�0

α2n

n!
δ�2	0nlog2 cosh jαj2

−
Xd−1
n�0

α2n

n!
δ�2	0nlog2

α2n

n!

!
, (B4)

Codd
rel:ent:�α� �

1

sinh jαj2
 Xd−1

n�0

α2n

n!
δ�2	1nlog2 sinh jαj2

−
Xd−1
n�0

α2n

n!
δ�2	1nlog2

α2n

n!

!
: (B5)

The l 1 norm of coherence of the even and odd cat states can
be expressed as

C even
l 1

�α� � 1

cosh jαj2
Xd−1
m, n�0
m≠n

αm�nffiffiffiffiffiffiffiffi
m!n!

p δ�2	0mδ
�2	
0n, (B6)

Codd
l1

�α� � 1

sinh jαj2
Xd−1
m, n�0
m≠n

αm�nffiffiffiffiffiffiffiffi
m!n!

p δ�2	1mδ
�2	
1n: (B7)

The dependence of relative entropy and the l1 norm of
quantum coherence of an odd cat state on its amplitude with
different dimensions is shown in Fig. 4. We can see that when
the amplitude is less than two, the quantum coherences of cat
states in the 16- or 12-dimensional Hilbert space are the same,
which indicates the 12-dimensional Hilbert space we used in
our experiment is enough to estimate the quantum coherence
of cat states with small amplitudes.
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