• Journal of Atmospheric and Environmental Optics
  • Vol. 11, Issue 5, 391 (2016)
Zhaoliang ZENG1、2, Jianping GUO2、*, and Daxi MA1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2016.05.007 Cite this Article
    ZENG Zhaoliang, GUO Jianping, MA Daxi. Research of Aerosol Three-Dimensional Distribution Based on Multi-Satellite Data over Jiangxi[J]. Journal of Atmospheric and Environmental Optics, 2016, 11(5): 391 Copy Citation Text show less
    References

    [1] Wang Mingxing, Zhang Renjian. Frontier of atmospheric aerosol research[J]. Climatic and Environmental Research, 2001,(1): 119-124(in Chinese).

    [2] Hinds W C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles[M]. New York: Wiley-Interscience, 1982.

    [3] Forster P, Ramaswamy V, Artaxo P, et al. Changes in atmospheric constituents and in radiative forcing[A]// Chapter 2 in Climate Change 2007[M]. The Physical Science Basis. 2007.

    [4] Twomey S. The influence of pollution on the shortwave albedo of clouds[J]. J. Atmos. Sci., 1977, 34(7): 1149-1152.

    [5] Wang Mingxing. Aerosol in relation to climate change[J]. Climatic and Environmental Research, 2000, 5(1): 1-5(in Chinese).

    [6] Liu Yi, Wang Mingxing, Zhang Renjian. The present status of aerosol research in China[J]. Climatic and Environmental Research, 1999, 4(4): 406-414(in Chinese).

    [7] Change I C. The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. New York: Cambridge University Press, 2013.

    [8] Chen Liangfu. Research and Application of Aerosol Remote Sensing Quantitative Retrieval[M]. Beijing: Chinese Science Press, 2011(in Chinese).

    [9] Xia Xiang’ao. Global MODIS aerosol optical thickness is significantly higher over land[J]. Chinese Science Bulletin, 2006, 51(19): 2297-2303(in Chinese).

    [10] Guo J P, Zhang X Y, Wu Y R,et al. Spatio-temporal variation trends of satellite-based aerosol optical depth in China during 1980-2008[J]. Atmos. Environ., 2011, 45(37): 6802-6811.

    [11] Huang J F, Guo J P, Wang F,et al. CALIPSO inferred most probable heights of global dust and smoke layers[J]. J. Geophys. Res.: Atmos., 2015, 120(10): 5085-5100.

    [12] Guan H, Schmid B, Bucholtz A,et al. Sensitivity of shortwave radiative flux density, forcing, and heating rate to the aerosol vertical profile[J]. J. Geophys. Res.: Atmos., 2010, 115(D6): D06209.

    [13] Zhao Yiming, Jiang Yuesong, Zhang Xuguo, et al. Research on the depoalrization ratio characteristic of the aerosol in the atmosphere with the CALIPSO satellite data[J]. Acta Optica Sinica, 2009, 29(11): 2943-2951(in Chinese).

    [14] Adams A M, Prospero J M, Zhang C. CALIPSO-derived three-dimensional structure of aerosol over the Atlantic Basin and adjacent continents[J].J. Climate, 2012, 25(19): 6862-6879.

    [15] Hunt W H, Winker D M, Vaughan M A,et al. CALIPSO lidar description and performance assessment[J]. J. Atmos. Ocean. Tech., 2009, 26(7): 1214-1228.

    [16] Panel for Project of Atmospheric Composition Watch and Service System Construction of Jiangxi Province. Discussion on atmospheric composition watch and service system construction of Jiangxi province[J]. Meteorology and Disaster Reduction Research, 2005, 28(3): 9-16(in Chinese).

    [17] Zheng Xiaobo, Zhou Chengxia, Luo Yuxiang,et al. Chinese province-level variations and trends in aerosol optical depth from recent 10 years of remote sensing data[J]. Ecology and Environmental Sciences, 2011, 20(4): 595-599(in Chinese).

    [18] Levy R C, Leptoukh G G, Kahn R, et al. A critical look at deriving monthly aerosol optical depth from satellite data[J]. IEEE Trans. Geosci. Remote Sens., 2009, 47(8): 2942-2956.

    [19] Powell K A, Hostetler C A, Vaughan M A, et al. CALIPSO lidar calibration algorithms. Part I: Nighttime 532-nm parallel channel and 532-nm perpendicular channel[J]. J. Atmos. Ocean. Tech., 2009, 26(10): 2015-2033.

    [20] Wang Fu. Analysis of Aerosol-Cloud Interaction Observed from Spaceborne Sensors over Eastern China[D]. Chengdu: Doctorial Dissertation of University of Electronic Science and Technology of China, 2015(in Chinese).

    [21] Ma Yingying, Gong Wei, Zhu Zhongmin. Aerosol optical characteristics in South East China determined using spaceborne lidar[J]. Journal of Remote Sensing, 2009, 13(4): 715-728(in Chinese).

    [22] Guo J P, Xue Y, Cao C X, et al. A synergic algorithm for retrieval of aerosol optical depth over land[J]. Adv. Atmos. Sci., 2009, 26(5): 973-983.

    [23] Huang L, Jiang J H, Tackett J L,et al. Seasonal and diurnal variations of aerosol extinction profile and type distribution from CALIPSO 5-year observations[J]. J. Geophys. Res.: Atmos., 2013, 118(10): 4572-4596.

    [24] Wang F, Guo J P, Wu Y R,et al. Satellite observed aerosol-induced variability in warm cloud properties under different meteorological conditions over eastern China[J]. Atmos. Environ., 2014, 84: 122-132.

    [25] Liu Z, Vaughan M, Winker D, et al. The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance[J]. J. Atmos. Ocean. Tech., 2009, 26(7): 1198-1213.

    [26] Guo J P, Zhang X Y, Cao C X,et al. Monitoring haze episodes over the Yellow Sea by combining multi sensor measurements[J]. Inter. J. Remote Sens., 2010, 31(17-18): 4743-4755.

    ZENG Zhaoliang, GUO Jianping, MA Daxi. Research of Aerosol Three-Dimensional Distribution Based on Multi-Satellite Data over Jiangxi[J]. Journal of Atmospheric and Environmental Optics, 2016, 11(5): 391
    Download Citation