• Laser & Optoelectronics Progress
  • Vol. 55, Issue 8, 82401 (2018)
Li Wei, Liu Chao, Lü Jingwei, Liu Zhaoting, and Wang Famei
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop55.082401 Cite this Article Set citation alerts
    Li Wei, Liu Chao, Lü Jingwei, Liu Zhaoting, Wang Famei. LSPR Properties of Metal-Compound-Graphene Composite Nanoarray Structure[J]. Laser & Optoelectronics Progress, 2018, 55(8): 82401 Copy Citation Text show less
    References

    [1] Monzn-Hernndez D, Villatoro J. High resolution refractive index sensing by means of a multiple-peak surface plasmon resonance optical fiber sensor[J]. Sensors and Actuators B: Chemical, 2006, 115(1): 227-231.

    [2] Shao L Y, Shevchenko Y, Albert J. Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors[J]. Optics Express, 2010, 18(11): 11465-11471.

    [3] Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment[J]. The Journal of Physical Chemistry B, 2003, 107(3): 668-677.

    [4] Knight M W, Halas N J. Nanoshells to nanoeggs to nanocups: Optical properties of reduced symmetry core-shell nanoparticles beyond the quasistatic limit[J]. New Journal of Physics, 2008, 10: 119-125.

    [5] Wu D J, Jiang S M, Liu X J. Tunable Fano resonances in three-layered bimetallic Au and Ag nanoshell[J]. The Journal of Physical Chemistry C, 2011, 115(48): 23797-23801.

    [6] Kahane S V, Sudarsan V, Mahamuni S. A study of charge transfer mechanism and optical properties of Au-CdS core-shell nanocrystals[J]. Journal of Luminescence, 2014, 147: 353-357.

    [7] Zhang M, Lü J W, Liu Z T, et al. Surface plasmon resonance properties of silver nanosphere arrays[J]. Laser & Optoelectronics Progress, 2016, 53(8): 081601.

    [8] Zhu J, Ren Y J. The effect of negative curvature on the plasmonic coupling of concentric core-shell metallic nanostructures[J]. Plasmonics, 2014, 9(5): 1077-1084.

    [9] Yuan Y Q, Hu D, Li H, et al. Theoretical investigations for surface plasmon resonance based optical fiber tip sensor[J]. Sensors and Actuators B: Chemical, 2013, 188: 757-760.

    [10] Tu M H, Sun T, Grattan K T V. Optimization of gold-nanoparticle-based optical fiber surface plasmon resonance-based sensors[J]. Sensors and Actuators B: Chemical, 2012, 164(1): 43-53.

    [11] Takahata R, Yamazoe S, Koyasu K, et al. Surface plasmon resonance in gold ultrathin nanorods and nanowires[J]. Journal of American Chemical Society, 2014, 136(24): 8489-8491.

    [12] Fan X M, Zou W J, Gu R A, et al. Preparation of Au@SiO2 core-shell nanoparticles and their surface-enhanced Raman spectra[J]. Chemical Journal of Chinese Universities, 2008, 29(1): 130-134.

    [13] Fu G J, Zhang J P, Lü J W, et al. Fano resonance properties of Au-interlayer-Ag multilayer nanoshells[J]. Ordnance Material Science and Engineering, 2017, 40(1): 8-13.

    [14] Zhang X F, Zhang L M, Fan Q F, et al. Tunable localized surface plasmon resonance of gold nanoshell particle[J]. Chinese Journal of Lasers, 2011, 38(9): 0910001.

    [15] Qin X J, Guo Y N, Xue W R. Numerical simulation of a surface plasmonic waveguide with double parallel columniform metallic nanorods coated with gain medium[J]. Chinese Journal of Lasers, 2011, 38(3): 0310001.

    [16] Cortie M, Ford M. A plasmon-induced current loop in gold semi-shells[J]. Nanotechnology, 2007, 18(23): 5704-5706.

    [17] Zhang J P, Fu G J, Lü J W, et al. Optical properties of symmetry-breaking Au-ITO-Ag multilayer nanoshells[J]. Ordnance Material Science and Engineering, 2017, 40(3): 46-51.

    [18] Zhao D E, Zhao Y S. Research on SPR sensors using theoretical simulation[J]. Journal of Test and Measurement Technology, 2008(3): 265-268.

    [19] Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: Review[J]. Sensors and Actuators B: Chemical, 1999, 54(1/2): 3-15.

    [20] Yuan Y Q, Hu D, Hua L, et al. Theoretical investigations for surface plasmon resonance based optical fiber tip sensor[J]. Sensors and Actuators B: Chemical, 2013, 188: 757-760.

    [21] He B L, Xiong L. Research progress in effect of metal surface nanocrystallization on material properties[J]. Ordnance Material Science and Engineering, 2016, 39(2): 116-120.

    [22] Mu H W, Wang H J, Wang Q, et al. Research on theoretical simulation of SPR[J]. Optical Instruments, 2011, 33(2): 1-6.

    [23] Bi W H, Ma J Y, Yang K L, et al. Graphene-based optical fiber and its applications[J]. Laser & Optoelectronics Progress, 2017, 54(4): 040002.

    [24] Wan P, Yang C H. Properties of graphene TE mode surface plasmons and surface plasmon waveguides[J]. Acta Optica Sinica, 2017, 37 (11): 1124002.

    [25] Huang M, Gu C S, Sun B, et al. Refractive index sensor based on tilted-fiber Bragg grating coated with graphene[J].Chinese Journal of Lasers, 2017, 44(12): 1210001.

    [26] Kravets V G, Grigorenko A N, Nair R R, et al. Spectroscopic ellipsometry of graphene and an exciton-shifted van hove peak in absorption[J]. Physical Review B: Covering Condensed Matter and Materials Physics, 2010, 81(15): 155413.

    [27] Amendola V. Surface plasmon resonance of silver and gold nanoparticles in the proximity of graphene studied using the discrete dipole approximation method[J]. Physical Chemistry Chemical Physics, 2016, 18: 2230-2241.

    [28] Maurer T, Nicolas R, Lévêque G, et al. Enhancing LSPR sensitivity of Au gratings through graphene coupling to Au film[J]. Plasmonics, 2014, 9(3): 507-512.

    Li Wei, Liu Chao, Lü Jingwei, Liu Zhaoting, Wang Famei. LSPR Properties of Metal-Compound-Graphene Composite Nanoarray Structure[J]. Laser & Optoelectronics Progress, 2018, 55(8): 82401
    Download Citation