• Photonics Research
  • Vol. 10, Issue 11, 2628 (2022)
Najmeh Abbasirad1、*, Angela Barreda1、2, Yi-Ju Chen3, Jer-Shing Huang3, Isabelle Staude1、2, Frank Setzpfandt1, and Thomas Pertsch1、4
Author Affiliations
  • 1Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07745 Jena, Germany
  • 2Institute of Solid State Physics, Friedrich Schiller University Jena, 07743 Jena, Germany
  • 3Research Department of Nanooptics, Leibniz Institute of Photonic Technology, 07745 Jena, Germany
  • 4Fraunhofer-Institute for Applied Optics and Precision Engineering IOF, 07745 Jena, Germany
  • show less
    DOI: 10.1364/PRJ.465126 Cite this Article Set citation alerts
    Najmeh Abbasirad, Angela Barreda, Yi-Ju Chen, Jer-Shing Huang, Isabelle Staude, Frank Setzpfandt, Thomas Pertsch. Near-field launching and mapping unidirectional surface plasmon polaritons using an automated dual-tip scanning near-field optical microscope[J]. Photonics Research, 2022, 10(11): 2628 Copy Citation Text show less
    References

    [1] N. Abbasirad, A. Barreda, D. Arslan, M. Steinert, S. Fasold, C. Rockstuhl, I. Staude, F. Setzpfandt, T. Pertsch. Investigation of dipole emission near a dielectric metasurface using a dual-tip scanning near-field optical microscope. Nanophotonics, 10, 4511-4522(2021).

    [2] S. Schmidt, A. Klein, T. Paul, H. Gross, S. Diziain, M. Steinert, A. Assafrao, T. Pertsch, H. Urbach, C. Rockstuhl. Image formation properties and inverse imaging problem in aperture based scanning near field optical microscopy. Opt. Express, 24, 4128-4142(2016).

    [3] L. Sun, B. Bai, X. Meng, T. Cui, G. Shang, J. Wang. Near-field probing the magnetic field vector of visible light with a silicon nanoparticle probe and nanopolarimetry. Opt. Express, 26, 24637-24652(2018).

    [4] P. J. Schuck, W. Bao, N. J. Borys. A polarizing situation: taking an in-plane perspective for next-generation near-field studies. Front. Phys., 11, 117804(2016).

    [5] S. Xiao, J. Wang, F. Liu, S. Zhang, X. Yin, J. Li. Spin-dependent optics with metasurfaces. Nanophotonics, 6, 215-234(2017).

    [6] K. Y. Bliokh, F. J. Rodrguez-Fortuño, F. Nori, A. V. Zayats. Spin–orbit interactions of light. Nat. Photonics, 9, 796-808(2015).

    [7] H. A. Bethe. Theory of diffraction by small holes. Phys. Rev., 66, 163-182(1944).

    [8] C. Bouwkamp. On Bethe’s theory of diffraction by small holes. Philips Res. Rep., 5, 321-332(1950).

    [9] E. Betzig, R. J. Chichester. Single molecules observed by near-field scanning optical microscopy. Science, 262, 1422-1425(1993).

    [10] C. Obermüller, K. Karrai. Far field characterization of diffracting circular apertures. Appl. Phys. Lett., 67, 3408-3410(1995).

    [11] C. Obermüller, K. Karrai, G. Kolb, G. Abstreiter. Transmitted radiation through a subwavelength-sized tapered optical fiber tip. Ultramicroscopy, 61, 171-177(1995).

    [12] A. Drezet, J. Woehl, S. Huant. Extension of Bethe’s diffraction model to conical geometry: application to near-field optics. Europhys. Lett., 54, 736(2001).

    [13] J. D. Jackson. Electrodynamics. The Optics Encyclopedia: Basic Foundations and Practical Applications(2007).

    [14] D. Shin, A. Chavez-Pirson, S. Kim, S. Jung, Y.-H. Lee. Diffraction by a subwavelength-sized aperture in a metal plane. J. Opt. Soc. Am. A, 18, 1477-1486(2001).

    [15] J. J. Greffet, R. Carminati. Image formation in near-field optics. Prog. Surf. Sci., 56, 133-237(1997).

    [16] M. Burresi, T. Kampfrath, D. Van Oosten, J. Prangsma, B. Song, S. Noda, L. Kuipers. Magnetic light-matter interactions in a photonic crystal nanocavity. Phys. Rev. Lett., 105, 123901(2010).

    [17] S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, D. S. Wiersma, M. Gurioli. Magnetic imaging in photonic crystal microcavities. Phys. Rev. Lett., 105, 123902(2010).

    [18] B. Feber, N. Rotenberg, D. M. Beggs, L. Kuipers. Simultaneous measurement of nanoscale electric and magnetic optical fields. Nat. Photonics, 8, 43-46(2013).

    [19] I. V. Kabakova, A. De Hoogh, R. E. Van Der Wel, M. Wulf, B. Le Feber, L. Kuipers. Imaging of electric and magnetic fields near plasmonic nanowires. Sci. Rep., 6, 22665(2016).

    [20] H. Kihm, S. Koo, Q. Kim, K. Bao, J. Kihm, W. Bak, S. Eah, C. Lienau, H. Kim, N. K. Park, D.-S. Kim. Bethe-hole polarization analyser for the magnetic vector of light. Nat. Commun., 2, 451(2011).

    [21] H. W. Kihm, J. Kim, S. Koo, J. Ahn, K. Ahn, K. Lee, N. Park, D.-S. Kim. Optical magnetic field mapping using a subwavelength aperture. Opt. Express, 21, 5625-5633(2013).

    [22] D. Denkova, N. Verellen, A. V. Silhanek, V. K. Valev, P. V. Dorpe, V. V. Moshchalkov. Mapping magnetic near-field distributions of plasmonic nanoantennas. ACS Nano, 7, 3168-3176(2013).

    [23] D. Denkova, N. Verellen, A. V. Silhanek, P. Van Dorpe, V. V. Moshchalkov. Lateral magnetic near-field imaging of plasmonic nanoantennas with increasing complexity. Small, 10, 1959-1966(2014).

    [24] M. Burresi, D. Van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, L. Kuipers. Probing the magnetic field of light at optical frequencies. Science, 326, 550-553(2009).

    [25] U. Schröter, A. Dereux. Surface plasmon polaritons on metal cylinders with dielectric core. Phys. Rev. B, 64, 125420(2001).

    [26] E. Devaux, A. Dereux, E. Bourillot, J.-C. Weeber, Y. Lacroute, J.-P. Goudonnet, C. Girard. Local detection of the optical magnetic field in the near zone of dielectric samples. Phys. Rev. B, 62, 10504(2000).

    [27] D. K. Singh, J. S. Ahn, S. Koo, T. Kang, J. Kim, S. Lee, N. Park, D.-S. Kim. Selective electric and magnetic sensitivity of aperture probes. Opt. Express, 23, 20820-20828(2015).

    [28] L. Sun, B. Bai, J. Wang. Probing vectorial near field of light: imaging theory and design principles of nanoprobes. Opt. Express, 26, 18644-18663(2018).

    [29] A. E. Klein, N. Janunts, M. Steinert, A. Tünnermann, T. Pertsch. Polarization-resolved near-field mapping of plasmonic aperture emission by a dual-SNOM system. Nano Lett., 14, 5010-5015(2014).

    [30] B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, D. W. Pohl. Local excitation, scattering, and interference of surface plasmons. Phys. Rev. Lett., 77, 1889-1892(1996).

    [31] J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, F. Capasso. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science, 340, 331-334(2013).

    [32] Y. Qin, B. Ji, X. Song, J. Lin. Ultrafast spatiotemporal control of directional launching of surface plasmon polaritons in a plasmonic nano coupler. Photon. Res., 9, 514-520(2021).

    [33] Y. Gong, A. G. Joly, D. Hu, P. Z. El-Khoury, W. P. Hess. Ultrafast imaging of surface plasmons propagating on a gold surface. Nano Lett., 15, 3472-3478(2015).

    [34] J. González-Colsa, G. Serrera, J. M. Saiz, F. González, F. Moreno, P. Albella. On the performance of a tunable grating-based high sensitivity unidirectional plasmonic sensor. Opt. Express, 29, 13733-13745(2021).

    [35] T. Aihara, M. Fukuhara, A. Takeda, B. Lim, M. Futagawa, Y. Ishii, K. Sawada, M. Fukuda. Monolithic integration of surface plasmon detector and metal-oxide-semiconductor field-effect transistors. IEEE Photon. J., 5, 6800609(2013).

    [36] H. Qi, Z. Du, X. Hu, J. Yang, S. Chu, Q. Gong. High performance integrated photonic circuit based on inverse design method. Opto–Electron. Adv., 5, 210061(2022).

    [37] Y. Mitsuoka, K. Nakajima, K. Homma, N. Chiba, H. Muramatsu, T. Ataka, K. Sato. Polarization properties of light emitted by a bent optical fiber probe and polarization contrast in scanning near-field optical microscopy. J. Appl. Phys., 83, 3998-4003(1998).

    [38] L. Ramoino, M. Labardi, N. Maghelli, L. Pardi, M. Allegrini, S. Patane. Polarization-modulation near-field optical microscope for quantitative local dichroism mapping. Rev. Sci. Instrum., 73, 2051-2056(2002).

    [39] T. Mitsui, T. Sekiguchi. Observation of polarization property in near-field optical imaging by a polarization-maintaining fiber probe. J. Electron Microsc., 53, 209-215(2004).

    [40] T. Mitsui. Development of a polarization-preserving optical-fiber probe for near-field scanning optical microscopy and the influences of bending and squeezing on the polarization properties. Rev. Sci. Instrum., 76, 043703(2005).

    [41] D. Ploss, A. Kriesch, H. Pfeifer, P. Banzer, U. Peschel. Generation and subwavelength focusing of longitudinal magnetic fields in a metallized fiber tip. Opt. Express, 22, 13744-13754(2014).

    [42] N. Hartmann, G. Piredda, J. Berthelot, G. Colas Des Francs, A. Bouhelier, A. Hartschuh. Launching propagating surface plasmon polaritons by a single carbon nanotube dipolar emitter. Nano Lett., 12, 177-181(2012).

    [43] J. P. Mueller, F. Capasso. Asymmetric surface plasmon polariton emission by a dipole emitter near a metal surface. Phys. Rev. B, 88, 121410(2013).

    [44] A. E. Klein. Scanning near-field optical microscopy: from single-tip to dual-tip operation(2015).

    [45] L. Novotny, B. Hecht. Principles of Nano-Optics(2012).

    [46] A. Drezet, A. Cuche, S. Huant. Near-field microscopy with a single-photon point-like emitter: resolution versus the aperture tip?. Opt. Commun., 284, 1444-1450(2011).

    [47] https://www.lumerical.com/. https://www.lumerical.com/

    [48] B. N. Tugchin, N. Janunts, M. Steinert, K. Dietrich, E. B. Kley, A. Tünnermann, T. Pertsch. Quasi-linearly polarized hybrid modes in tapered and metal-coated tips with circular apertures: understanding the functionality of aperture tips. New J. Phys., 19, 063024(2017).

    [49] M. Kerker, D.-S. Wang, C. Giles. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am., 73, 765-767(1983).

    [50] A. Pors, S. K. H. Andersen, S. I. Bozhevolnyi. Unidirectional scattering by nanoparticles near substrates: generalized Kerker conditions. Opt. Express, 23, 28808-28828(2015).

    [51] R. Alaee, R. Filter, D. Lehr, F. Lederer, C. Rockstuhl. A generalized Kerker condition for highly directive nanoantennas. Opt. Lett., 40, 2645-2648(2015).

    [52] S.-Y. Lee, I.-M. Lee, J. Park, S. Oh, W. Lee, K.-Y. Kim, B. Lee. Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons. Phys. Rev. Lett., 108, 213907(2012).

    [53] N. Rotenberg, T. Krijger, B. Le Feber, M. Spasenović, F. J. G. de Abajo, L. Kuipers. Magnetic and electric response of single subwavelength holes. Phys. Rev. B, 88, 241408(2013).

    Najmeh Abbasirad, Angela Barreda, Yi-Ju Chen, Jer-Shing Huang, Isabelle Staude, Frank Setzpfandt, Thomas Pertsch. Near-field launching and mapping unidirectional surface plasmon polaritons using an automated dual-tip scanning near-field optical microscope[J]. Photonics Research, 2022, 10(11): 2628
    Download Citation