• Opto-Electronic Engineering
  • Vol. 44, Issue 1, 23 (2017)
[in Chinese]1、2, [in Chinese]1、2, [in Chinese]1、2, and [in Chinese]1、2、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.01.002.1 Cite this Article
    [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Research progress in plasmonic structural colors[J]. Opto-Electronic Engineering, 2017, 44(1): 23 Copy Citation Text show less
    References

    [1] Burresi M, Cortese L, Pattelli L, et al. Bright-white beetle scales optimise multiple scattering of light[J]. Scientific Reports, 2014, 4: 6075.

    [2] Xu Ting, Shi Haofei, Wu Y K, et al. Structural colors: from plasmonic to carbon nanostructures[J]. Small, 2011, 7(22): 3128-3136.

    [3] Padovani S, Puzzovio D, Sada C, et al. XAFS study of copper and silver nanoparticles in glazes of medieval middle-east lustreware (10th-13th century)[J]. Applied Physics A, 2006, 83(4): 521-528.

    [4] Colomban P. The use of metal nanoparticles to produce yellow, red and iridescent colour, from bronze age to present times in lustre pottery and glass: solid state chemistry, spectroscopy and nanostructure[J]. Journal of Nano Research, 2010, 8(27): 109-132.

    [5] Faraday M. The bakerian lecture: experimental relations of gold (and other metals) to light[J]. Philosophical Transactions of the Royal Society of London, 1857, 147: 145-181.

    [6] Mie G. Beitrge zur optik trüber medien, speziell kolloidaler metallsungen[J]. Annalen Der Physik, 1908, 330(3): 377-445.

    [7] Hedayati M K, Faupel F, Elbahri M. Review of plasmonic nanocomposite metamaterial absorber[J]. Materials, 2014, 7(2): 1221-1248.

    [8] Murray W A, Barnes W L. Plasmonic materials[J]. Advanced Materials, 2007, 19(22): 3771-3782.

    [9] Kildishev A V, Boltasseva A, Shalaev V M. Planar Photonics with Metasurfaces[J]. Science, 2013, 339(6125):1232009.

    [10] Gu Yinghong, Zhang Lei, Yang J K W, et al. Color generation via subwavelength plasmonic nanostructures[J]. Nanoscale, 2015, 7(15): 6409-6419.

    [11] Al-Salem S M, Lettieri P, Baeyens J. Recycling and recovery routes of plastic solid waste (PSW): a review[J]. Waste Management, 2009, 29(10): 2625-2643.

    [12] Kumar K, Duan Huigao, Hegde R S, et al. Printing colour at the optical diffraction limit[J]. Nature Nanotechnology, 2012, 7(9): 557-561.

    [13] Roberts A S, Pors A, Albrektsen O, et al. Subwavelength plasmonic color printing protected for ambient use[J]. Nano Letters, 2014, 14(2): 783-787.

    [14] Tan S J, Zhang Lei, Zhu Di, et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures[J]. Nano Letters, 2014, 14(7): 4023-4029.

    [15] Lueder E. Liquid crystal displays: addressing schemes and electro-optical effects[M]. 2nd ed. New York: Wiley Publishing, 2010.

    [16] Singh R R, Ho D, Nilchi A, et al. A CMOS/thin-film fluorescence contact imaging microsystem for DNA analysis[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57(5): 1029-1038.

    [17] Yokogawa S, Burgos S P, Atwater H A. Plasmonic color filters for CMOS image sensor applications[J]. Nano Letters, 2012, 12(8): 4349-4354.

    [18] Cho Y, Choi Y K, Sohn S H. Optical properties of neodymium-containing polymethylmethacrylate films for the organic light emitting diode color filter[J]. Applied Physics Letters, 2006, 89(5): 051102.

    [19] Xin J Z, Hui K C, Wang K, et al. Thermal tuning of surface plasmon resonance: Ag gratings on barium strontium titanate thin films[J]. Applied Physics A, 2012, 107(1): 101-107.

    [20] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193.

    [21] Stockman M I. Nanoplasmonics: the physics behind the applications[J]. Physics Today, 2011, 64(2): 39-44.

    [22] Arsenault A C, Míguez H, Kitaev V, et al. A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: a step towards photonic ink (P-Ink)[J]. Advanced Materials, 2003, 15(6): 503-507.

    [23] Kim H, Ge Jianping, Kim J, et al. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal[J]. Nature Photonics, 2009, 3(9): 534-540.

    [24] Cao Linyou, Fan Pengyu, Barnard E S, et al. Tuning the color of silicon nanostructures[J]. Nano Letters, 2010, 10(7): 2649-2654.

    [25] Seo K, Wober M, Steinvurzel P, et al. Multicolored vertical silicon nanowires[J]. Nano Letters, 2011, 11(4): 1851-1856.

    [26] Ritchie R H, Arakawa E T, Cowan J J, et al. Surface-plasmon resonance effect in grating diffraction[J]. Physical Review Letters, 1968, 21(22): 1530-1533.

    [27] Homola J, Koudela I, Yee S S. Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison[J]. Sensors and Actuators B: Chemical, 1999, 54(1-2): 16-24.

    [28] Kaplan A F, Xu Ting, Guo L J. High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography[J]. Applied Physics Letters, 2011, 99(14): 143111.

    [29] Zeng Beibei, Gao Yongkang, Bartoli F J. Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters[J]. Scientific Reports, 2013, 3: 2840.

    [30] Yoon Y T, Park C H, Lee S S. Highly efficient color filter incorporating a thin metal-dielectric resonant structure[J]. Applied Physics Express, 2012, 5(2): 022501.

    [31] Park C H, Yoon Y T, Shrestha V R, et al. Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating[J]. Optics Express, 2013, 21(23): 28783-28793.

    [32] Honma H, Takahashi K, Fukuhara M, et al. Free-standing aluminium nanowire arrays for high-transmission plasmonic colour filters[J]. IET Micro & Nano Letters, 2014, 9(12): 891-895.

    [33] Shrestha V R, Lee S S, Kim E S, et al. Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array[J]. Scientific Reports, 2015, 5: 12450.

    [34] Ye M, Hu X L, Sun L B, et al. Duty cycle dependency of the optical transmission spectrum in an ultrathin nanostructured Ag film[J]. Journal of Alloys and Compounds, 2015, 621: 244-249.

    [35] Kedawat G, Kumar P, Vijay Y K, et al. Fabrication of highly efficient resonant structure assisted ultrathin artificially stacked Ag/ZnS/Ag multilayer films for color filter applications[J]. Journal of Materials Chemistry C, 2015, 3(26): 6745-6754.

    [36] Duempelmann L, Luu-Dinh A, Gallinet B, et al. Four-fold color filter based on plasmonic phase retarder[J]. ACS Photonics, 2016, 3(2): 190-196.

    [37] Kaplan A F, Xu Ting, Wu Y K, et al. Multilayer pattern transfer for plasmonic color filter applications[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2010, 28(6): C6060-C6063.

    [38] Duempelmann L, Casari D, Luu-Dinh A, et al. Color rendering plasmonic aluminum substrates with angular symmetry breaking[J]. ACS Nano, 2015, 9(12): 12383–12391.

    [39] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669.

    [40] Ghaemi H F, Thio T, Grupp D E, et al. Surface plasmons enhance optical transmission through subwavelength holes[J]. Physical Review B, 1998, 58(11): 6779.

    [41] Genet C, Ebbesen T W. Light in tiny holes[J]. Nature, 2007, 445(7123): 39-46.

    [42] Sun L B, Hu X L, Xu Y, et al. Influence of structural parameters to polarization-independent color-filter behavior in ultrathin Ag films[J]. Optics Communications, 2014, 333: 16-21.

    [43] Si Guangyuan, Zhao Yanhui, Liu Hong, et al. Annular aperture array based color filter[J]. Applied Physics Letters, 2011, 99(3): 033105.

    [44] Li Zhibo, Clark A W, Cooper J M. Dual color plasmonic pixels create a polarization controlled nano color palette[J]. ACS Nano, 2016, 10(1): 492-498.

    [45] Lee H S, Yoon Y T, Lee S S, et al. Color filter based on a subwavelength patterned metal grating[J]. Optics Express, 2007, 15(23): 15457-15463.

    [46] Chen Qin, Cumming D R S. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films[J]. Optics Express, 2010, 18(13): 14056-14062.

    [47] Chen Qin, Chitnis D, Walls K, et al. CMOS photodetectors integrated with plasmonic color filters[J]. IEEE Photonics Technology Letters, 2012, 24(3): 197-199.

    [48] Rajasekharan R, Balaur E, Minovich A, et al. Filling schemes at submicron scale: development of submicron sized plasmonic colour filters[J]. Scientific Reports, 2014, 4: 6435.

    [49] Park C H, Yoon Y T, Lee S S. Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure[J]. Optics Express, 2012, 20(21): 23769-23777.

    [50] Yu Yan, Chen Qin, Wen Long, et al. Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters[J]. Optics Express, 2015, 23(17): 21994-22003.

    [51] Degiron A, Ebbesen T W. The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures[J]. Journal of Optics A: Pure and Applied Optics, 2005, 7(2): S90-S96.

    [52] Sun L B, Hu X L, Zeng Beibei, et al. Effect of relative nanohole position on colour purity of ultrathin plasmonic subtractive colour filters[J]. Nanotechnology, 2015, 26(30): 305204.

    [53] Dionne J A, Sweatlock L A, Atwater H A, et al. Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization[J]. Physical Review B, 2006, 73(3): 035407.

    [54] Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 2006, 440(7083): 508-511.

    [55] Lindquist N C, Luhman W A, Oh S H, et al. Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells[J]. Applied Physics Letters, 2008, 93(12): 123308.

    [56] Kang M G, Xu Ting, Park H J, et al. Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes[J]. Advanced Materials, 2010, 22(39): 4378-4383.

    [57] Lezec H J, Dionne J A, Atwater H A. Negative refraction at visible frequencies[J]. Science, 2007, 316(5823): 430-432.

    [58] Chen Huajin, Liu Shiyang. Manipulating electromagnetic wave with the magnetic surface plasmon based metamaterials[J]. Applied Physics A, 2012, 107(2): 363-370.

    [59] Diest K, Dionne J A, Spain M, et al. Tunable color filters based on metal-insulator-metal resonators[J]. Nano Letters, 2009, 9(7): 2579-2583.

    [60] Xu Ting, Wu Y K, Luo Xiangang, et al. Plasmonic nanoresonators for high-resolution colour filtering and spectralimaging[J]. Nature Communications, 2010, 1: 59.

    [61] Park H J, Xu Ting, Lee J Y, et al. Photonic color filters integrated with organic solar cells for energy harvesting[J]. ACS Nano, 2011, 5(9): 7055-7060.

    [62] Chen Houtong, Padilla W J, Zide J M O, et al. Active terahertz metamaterial devices[J]. Nature, 2006, 444(7119): 597-600.

    [63] Shaltout A, Liu Jingjing, Shalaev V M, et al. Optically active metasurface with non-chiral plasmonic nanoantennas[J]. Nano Letters, 2014, 14(8): 4426-4431.

    [64] Yoo M, Lim S. Active metasurface for controlling reflection and absorption properties[J]. Applied Physics Express, 2014, 7(11): 112204.

    [65] Si Guangyuan, Zhao Yanhui, Leong E S P, et al. Liquid-crystal-enabled active plasmonics: a review[J]. Materials, 2014, 7(2): 1296-1317.

    [66] Xu Ting, Walter E C, Agrawal A, et al. High-contrast and fast electrochromic switching enabled by plasmonics[J]. Nature Communications, 2016, 7: 10479.

    [67] Wang Guoping, Chen Xuechen, Liu Sheng, et al. Mechanical chameleon through dynamic real-time plasmonic tuning[J]. ACS Nano, 2016, 10(2): 1788–1794.

    [68] Liu Yanjun, Si Guangyuan, Leong E S P, et al. Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays[J]. Advanced Materials, 2012, 24(23): OP131-OP135.

    [69] Liu Y J, Si G Y, Leong E S P, et al. Optically tunable plasmonic color filters[J]. Applied Physics A, 2012, 107(1): 49-54.

    [70] Boltasseva A, Atwater H A. Low-loss plasmonic metamaterials[J]. Science, 2011, 331(6015): 290-291.

    [71] Hedayati M K, Faupel F, Elbahri M. Review of plasmonic nanocomposite metamaterial absorber[J]. Materials, 2014, 7(2): 1221-1248.

    [72] Asadchy V S, Faniayeu I A, Ra’di Y, et al. Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption[J]. Physical Review X, 2015, 5(3): 031005.

    [73] Ra'di Y, Simovski C R, Tretyakov S A. Thin perfect absorbers for electromagnetic waves: theory, design, and realizations[J]. Physical Review Applied, 2015, 3(3): 037001.

    [74] Yang Chenying, Ji Chengang, Shen Weidong, et al. Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption[J]. ACS Photonics, 2016, 3(4): 590–596.

    [75] Liang Qiuqun, Wang Taisheng, Lu Zhenwu, et al. Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting[J]. Advanced Optical Materials, 2013, 1(1): 43-49.

    [76] He S, Ding F, Mo L, et al. Light absorber with an ultra-broad flat band based on multi-sized slow-wave hyperbolic metamaterial thin-films[J]. Progress in Electromagnetics Research, 2014, 147: 69-79.

    [77] Zhou Lin, Tan Yingling, Ji Dengxin, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Science Advances, 2016, 2(4): e1501227.

    [78] Wang Hui, Tam F, Grady N K, et al. Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance[J]. The Journal of Physical Chemistry B, 2005, 109(39): 18218-18222.

    [79] Henglein A. Colloidal silver nanoparticles: photochemical preparation and interaction with O2, CCl4, and some metal ions[J]. Chemistry of Materials, 1998, 10(1): 444-450.

    [80] Mcmahon M D, Lopez R, Meyer III H M, et al. Rapid tarnishing of silver nanoparticles in ambient laboratory air[J]. Applied Physics B, 2005, 80(7): 915-921.

    [81] Schwab P M, Moosmann C, Dopf K, et al. Oxide mediated spectral shifting in aluminum resonant optical antennas[J]. Optics Express, 2015, 23(20): 26533-26543.

    [82] Knight M W, King N S, Liu Lifei, et al. Aluminum for plasmonics[J]. ACS Nano, 2014, 8(1): 834-840.

    [83] Hajlund-Nielsen E, Clausen J, Mqkela T, et al. Plasmonic colors: toward mass production of metasurfaces[J]. Advanced Materials Technologies, 2016, 1(7): 1600054.

    [84] Jardret V, Lucas B N, Oliver W, et al. Scratch durability of automotive clear coatings: a quantitative, reliable and robust methodology[J]. Journal of Coatings Technology, 2000, 72(8): 79-88.

    [85] Schulz U, Wachtendorf V, Klimmasch T, et al. The influence of weathering on scratches and on scratch and mar resistance of automotive coatings[J]. Progress in Organic Coatings, 2001, 42(1-2): 38-48.

    [86] Synnefa A, Santamouris M, Apostolakis K. On the development, optical properties and thermal performance of cool colored coatings for the urban environment[J]. Solar Energy, 2007, 81(4): 488-497.

    [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Research progress in plasmonic structural colors[J]. Opto-Electronic Engineering, 2017, 44(1): 23
    Download Citation