• Infrared and Laser Engineering
  • Vol. 51, Issue 7, 20220211 (2022)
Shuai Zhao and Shenyu Dai
Author Affiliations
  • Department of Photoelectric Technology, Jihua Laboratory, Foshan 528200, China
  • show less
    DOI: 10.3788/IRLA20220211 Cite this Article
    Shuai Zhao, Shenyu Dai. Tuning the optical properties of chiral two-dimensional perovskites by high pressure[J]. Infrared and Laser Engineering, 2022, 51(7): 20220211 Copy Citation Text show less
    References

    [1] G Long, R Sabatini, M I Saidaminov, et al. Chiral-perovskite optoelectronics. Nature Reviews Materials, 5, 423-439(2020).

    [2] J Ma, H Wang, D Li. Recent progress of chiral perovskites: materials, synthesis, and properties. Advanced Materials, 33, 2008785(2021).

    [3] S Ma, J Ahn, J Moon. Chiral perovskites for next-generation photonics: from chirality transfer to chiroptical activity. Advanced Materials, 33, 2005760(2021).

    [4] Y Chen, Y Sun, J Peng, et al. 2D Ruddlesden–Popper perovskites for optoelectronics. Advanced Materials, 30, 1703487(2018).

    [5] P Vashishtha, M Ng, S B Shivarudraiah, et al. High efficiency blue and green light-emitting diodes using Ruddlesden–Popper inorganic mixed halide perovskites with butylammonium interlayers. Chemistry of Materials, 31, 83-89(2018).

    [6] C Fang, H Wang, Z Shen, et al. High-performance photodetectors based on lead-free 2D Ruddlesden–Popper perovskite/MoS2 heterostructures. ACS applied materials, 11, 8419-8427(2019).

    [7] Z Yang, M Wang, M Zhang, . All-inorganic perovskite nanocrystal film photodetector. Infrared and Laser Engineering, 47, 0920007(2018).

    [8] P Cheng, Z Xu, J Li, et al. Highly efficient Ruddlesden–Popper halide perovskite PA2MA4Pb5I16 solar cells. ACS Energy Letters, 3, 1975-1982(2018).

    [9] T Schmitt, S Bourelle, N Tye, et al. Control of crystal symmetry breaking with halogen-substituted benzylammonium in layered hybrid metal-halide perovskites. Journal of the American Chemical Society, 142, 5060-5067(2020).

    [10] J Ahn, S Ma, J Y Kim, et al. Chiral 2D organic inorganic hybrid perovskite with circular dichroism tunable over wide wavelength range. Journal of the American Chemical Society, 142, 4206-4212(2020).

    [11] J Ma, C Fang, C Chen, et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano, 13, 3659-3665(2019).

    [12] C Yuan, X Li, S Semin, et al. Chiral lead halide perovskite nanowires for second-order nonlinear optics. Nano Letters, 18, 5411-5417(2018).

    [13] L S Li, Y H Tan, W J Wei, et al. Chiral switchable low-dimensional perovskite ferroelectrics. ACS Applied Materials, 13, 2044-2051(2020).

    [14] D G Billing. Lemmerer A. Bis [(S)-β-phenethylammonium] tribromoplumbate (II). Acta Crystallographica Section E:Structure Reports Online, 59, m381-m383(2003).

    [15] J Ahn, E Lee, J Tan, et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Materials Horizons, 4, 851-856(2017).

    [16] Y Zheng, X Han, J Xu. Recent progress in nonlinear optics of 2D organic-inorganic hybrid perovskites (Invited). Infrared and Laser Engineering, 49, 20201063(2020).

    [17] Y Dong, Y Zhang, X Li, et al. Chiral perovskites: promising materials toward next-generation optoelectronics. Small, 15, 1902237(2019).

    [18] C Chen, L Gao, W Gao, et al. Circularly polarized light detection using chiral hybrid perovskite. Nature Communications, 10, 1927(2019).

    [19] D Li, X Liu, W Wu, et al. Chiral lead-free hybrid perovskites for self-powered circularly polarized light detection. Angewandte Chemie, 133, 8496-8499(2021).

    [20] A Jaffe, Y Lin, H I Karunadasa. Halide perovskites under pressure: accessing new properties through lattice compression. ACS Energy Letters, 2, 1549-1555(2017).

    [21] I Swainson, M Tucker, D Wilson, et al. Pressure response of an organic-inorganic perovskite: methylammonium lead bromide. Chemistry of Materials, 19, 2401-2405(2007).

    [22] F Capitani, C Marini, S Caramazza, et al. High-pressure behavior of methylammonium lead iodide (MAPbI3) hybrid perovskite. Journal of Applied Physics, 119, 185901(2016).

    [23] Z Qin, S Dai, V G Hadjiev, et al. Revealing the origin of luminescence center in 0 D Cs4PbBr6 perovskite. Chemistry of Materials, 31, 9098-9104(2019).

    [24] Z Ma, Z Liu, S Lu, et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals. Nature Communications, 9, 4506(2018).

    [25] Y Wang, S Guo, H Luo, et al. Reaching 90% photoluminescence quantum yield in one-dimensional metal halide C4N2H14PbBr4 by pressure-suppressed nonradiative loss. Journal of the American Chemical Society, 142, 16001-16006(2020).

    [26] Q Li, B Xu, Z Chen, et al. Excitation-dependent emission color tuning of 0D Cs2InBr5·H2O at high pressure. Advanced Functional Materials, 31, 2104923(2021).

    [27] D Zhao, G Xiao, Z Liu, et al. Harvesting cool daylight in hybrid organic-inorganic halides microtubules through the reservation of pressure-induced emission. Advanced Materials, 33, 2100323(2021).

    [28] J Zhao, Y Zhao, Y Guo, et al. Layered metal-halide perovskite single-crystalline microwire arrays for anisotropic nonlinear optics. Advanced Functional Materials, 31, 2105855(2021).

    [29] S Guo, Y Zhao, K Bu, et al. Pressure-suppressed carrier trapping leads to enhanced emission in two‐dimensional perovskite (HA)2(GA)Pb2I7. Angewandte Chemie, 132, 17686-17692(2020).

    [30] Shi Shunxiang, Chen Guofu, Zhao Wei, et al. Nonlinear Optics[M]. Xi''an: Xidian University Press, 2012. (in Chinese)

    Shuai Zhao, Shenyu Dai. Tuning the optical properties of chiral two-dimensional perovskites by high pressure[J]. Infrared and Laser Engineering, 2022, 51(7): 20220211
    Download Citation