• Photonics Research
  • Vol. 10, Issue 11, 2614 (2022)
Yujie Cai1, Yu Chen1、2、4、*, Xiaoning Xin1, Kun Huang1, and E Wu1、2、3、5、*
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • 2Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 4e-mail:
  • 5e-mail:
  • show less
    DOI: 10.1364/PRJ.467695 Cite this Article Set citation alerts
    Yujie Cai, Yu Chen, Xiaoning Xin, Kun Huang, E Wu. Mid-infrared single-photon upconversion spectroscopy based on temporal-spectral quantum correlation[J]. Photonics Research, 2022, 10(11): 2614 Copy Citation Text show less
    References

    [1] G. Liu, C. Chang, Z. Qiao, K. Wu, Z. Zhu, G. Cui, W. Peng, Y. Tang, J. Li, C. Fan. Myelin sheath as a dielectric waveguide for signal propagation in the mid-infrared to terahertz spectral range. Adv. Funct. Mater., 29, 1807862(2019).

    [2] V. Mittal, G. Z. Mashanovich, J. S. Wilkinson. Perspective on thin film waveguides for on-chip mid-infrared spectroscopy of liquid biochemical analytes. Anal. Chem., 92, 10891-10901(2020).

    [3] S. Cha, J. H. Sung, S. Sim, J. Park, H. Heo, M.-H. Jo, H. Choi. 1s-intraexcitonic dynamics in monolayer MoS2 probed by ultrafast mid-infrared spectroscopy. Nat. Commun., 7, 10768(2016).

    [4] K. E. Jahromi, Q. Pan, L. Høgstedt, S. M. M. Friis, A. Khodabakhsh, P. M. Moselund, F. J. M. Harren. Mid-infrared supercontinuum-based upconversion detection for trace gas sensing. Opt. Express, 27, 24469-24480(2019).

    [5] M. Jin, F. Lu, M. A. Belkin. High-sensitivity infrared vibrational nanospectroscopy in water. Light Sci. Appl., 6, e17096(2017).

    [6] K. Wu, C. Qi, Z. Zhu, C. Wang, B. Song, C. Chang. Terahertz wave accelerates DNA unwinding: a molecular dynamics simulation study. J. Phys. Chem. Lett., 11, 7002-7008(2020).

    [7] Z. Xiang, C. Tang, C. Chang, G. Liu. A primary model of THz and far-infrared signal generation and conduction in neuron systems based on the hypothesis of the ordered phase of water molecules on the neuron surface I: signal characteristics. Sci. Bull., 65, 308-317(2020).

    [8] Y. Li, C. Chang, Z. Zhu, L. Sun, C. Fan. Terahertz wave enhances permeability of the voltage-gated calcium channel. J. Am. Chem. Soc., 143, 4311-4318(2021).

    [9] J. Zhang, Y. He, S. Liang, X. Liao, T. Li, Z. Qiao, C. Chang, H. Jia, X. Chen. Non-invasive, opsin-free mid-infrared modulation activates cortical neurons and accelerates associative learning. Nat. Commun., 12, 2730(2021).

    [10] K. Hashimoto, V. R. Badarla, T. Ideguchi. High-speed Fourier-transform infrared spectroscopy with phase-controlled delay line. Laser Photon. Rev., 15, 2000374(2021).

    [11] H. Mirmiranpour, F. S. Nosrati, S. O. Sobhani, S. N. Takantape, A. Amjadi. Effect of low level laser irradiation on the function of glycated catalase. J. Laser Med. Sci., 9, 212-218(2018).

    [12] Z. Peng, Z. Zhou, T. Li, M. Jiang, C. Li, T. Qing, L. Yang, X. Zhang. Real-time monitoring of the sucrose hydrolysis process based on two-photon coincidence measurements. Biomed. Opt. Express, 12, 6590-6600(2021).

    [13] D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, L. A. Krivitsky. Infrared spectroscopy with visible light. Nat. Photonics, 10, 98-101(2016).

    [14] C. Lindner, S. Wolf, J. Kiessling, F. Kühnemann. Fourier transform infrared spectroscopy with visible light. Opt. Express, 28, 4426-4432(2020).

    [15] C. Lindner, J. Kunz, S. J. Herr, S. Wolf, J. Kießling, F. Kühnemann. Nonlinear interferometer for Fourier-transform mid-infrared gas spectroscopy using near-infrared detection. Opt. Express, 29, 4035-4047(2021).

    [16] I. Coddington, N. Newbury, W. Swann. Dual-comb spectroscopy. Optica, 3, 414-426(2016).

    [17] M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, A. L. Gaeta. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun., 9, 1869(2018).

    [18] Z. Zuo, C. Gu, D. Peng, X. Zou, Y. Di, L. Zhou, D. Luo, Y. Liu, W. Li. Broadband mid-infrared molecular spectroscopy based on passive coherent optical-optical modulated frequency combs. Photon. Res., 9, 1358-1368(2021).

    [19] P. Tidemand-Lichtenberg, J. S. Dam, H. V. Andersen, L. Høgstedt, C. Pedersen. Mid-infrared upconversion spectroscopy. J. Opt. Soc. Am. B, 33, D28-D35(2016).

    [20] S. Wolf, J. Kiessling, M. Kunz, G. Popko, K. Buse, F. Kühnemann. Upconversion-enabled array spectrometer for the mid-infrared, featuring kilohertz spectra acquisition rates. Opt. Express, 25, 14504-14515(2017).

    [21] C. F. O’Donnell, S. C. Kumar, M. Ebrahim-Zadeh, P. Tidemand-Lichtenberg, C. Pedersen. Mid-infrared upconversion imaging using femtosecond pulses. Photon. Res., 7, 783-791(2019).

    [22] P. J. Rodrigo, L. Høgstedt, S. M. M. Friis, L. R. Lindvold, P. Tidemand-Lichtenberg, C. Pedersen. Room-temperature, high-SNR upconversion spectrometer in the 6–12 μm region. Laser Photon. Rev., 15, 2000443(2021).

    [23] T. W. Neely, L. Nugent-Glandorf, F. Adler, S. A. Diddams. Broadband mid-infrared frequency upconversion and spectroscopy with an aperiodically poled LiNbO3 waveguide. Opt. Lett., 37, 4332-4334(2012).

    [24] S. M. M. Friis, L. Høgstedt. Upconversion-based mid-infrared spectrometer using intra-cavity LiNbO3 crystals with chirped poling structure. Opt. Lett., 44, 4231-4234(2019).

    [25] X. Gu, K. Huang, Y. Li, H. Pan, E. Wu, H. Zeng. Temporal and spectral control of single-photon frequency upconversion for pulsed radiation. Appl. Phys. Lett., 96, 131111(2010).

    [26] K. Huang, X. Gu, H. Pan, E. Wu, H. Zeng. Few-photon-level two-dimensional infrared imaging by coincidence frequency upconversion. Appl. Phys. Lett., 100, 151102(2012).

    [27] Q. Zhou, K. Huang, H. Pan, E. Wu, H. Zeng. Ultrasensitive mid-infrared up-conversion imaging at few-photon level. Appl. Phys. Lett., 102, 241110(2013).

    [28] K. Huang, J. Fang, M. Yan, E. Wu, H. Zeng. Wide-field mid-infrared single-photon upconversion imaging. Nat. Commun., 13, 1077(2022).

    [29] M. M. Hayat, A. Joobeur, B. E. A. Saleh. Reduction of quantum noise in transmittance estimation using photon-correlated beams. J. Opt. Soc. Am. A, 16, 348-358(1999).

    [30] A. A. Kalachev, D. A. Kalashnikov, A. A. Kalinkin, T. G. Mitrofanova, A. V. Shkalikov, V. V. Samartsev. Biphoton spectroscopy of YAG:Er3+ crystal. Laser Phys. Lett., 4, 722-725(2007).

    [31] R. Whittaker, C. Erven, A. Neville, M. Berry, J. L. O’Brien, H. Cable, J. C. F. Matthews. Absorption spectroscopy at the ultimate quantum limit from single-photon states. New J. Phys., 19, 023013(2017).

    [32] D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, L. A. Krivitsky. Quantum spectroscopy of plasmonic nanostructures. Phys. Rev. X, 4, 011049(2014).

    [33] D. A. Antonosyan, A. R. Tamazyan, G. Y. Kryuchkyan. Chirped quasi-phase-matching with Gauss sums for production of biphotons. J. Phys. B, 45, 215502(2012).

    [34] J. Huang, P. Kumar. Observation of quantum frequency conversion. Phys. Rev. Lett., 68, 2153-2156(1992).

    [35] Z. Zhou, Y. Li, D. Ding, W. Zhang, S. Shi, B.-S. Shi, G. Guo. Orbital angular momentum photonic quantum interface. Light Sci. Appl., 5, e16019(2016).

    [36] A. Tehranchi, M. Ahlawat, A. Bostani, R. Kashyap. Flexible all-optical wavelength shifters using strong focusing in a wideband engineered PPLN. IEEE Photon. Technol. Lett., 28, 1924-1927(2016).

    [37] M. J. Collins, C. Xiong, I. H. Rey, T. D. Vo, J. He, S. Shahnia, C. Reardon, T. F. Krauss, M. J. Steel, A. S. Clark, B. J. Eggleton. Integrated spatial multiplexing of heralded single-photon sources. Nat. Commun., 4, 2582(2013).

    [38] K. Huang, Y. Wang, J. Fang, W. Kang, Y. Sun, Y. Liang, Q. Hao, M. Yan, H. Zeng. Mid-infrared photon counting and resolving via efficient frequency upconversion. Photon. Res., 9, 259-265(2021).

    [39] M. Mrejen, Y. Erlich, A. Levanon, H. Suchowski. Multicolor time-resolved upconversion imaging by adiabatic sum frequency conversion. Laser Photon. Rev., 14, 2000040(2020).

    [40] H. Chen, H. Huang, J. Cheng, X. Zhang, X. Feng, X. Cheng, L. Ma, K. Gu, W. Liang, W. Lin. Broadband yellow-orange light generation based on a step-chirped ppmgln ridge waveguide. Opt. Express, 30, 32110-32118(2022).

    [41] N. Tischler, M. Krenn, R. Fickler, X. Vidal, A. Zeilinger, G. Molina-Terriza. Quantum optical rotatory dispersion. Sci. Adv., 2, e1601306(2016).

    [42] G. Brida, S. Castelletto, C. Novero, M. L. Rastello. Quantum-efficiency measurement of photodetectors by means of correlated photons. J. Opt. Soc. Am. B, 16, 1623-1627(1999).

    Yujie Cai, Yu Chen, Xiaoning Xin, Kun Huang, E Wu. Mid-infrared single-photon upconversion spectroscopy based on temporal-spectral quantum correlation[J]. Photonics Research, 2022, 10(11): 2614
    Download Citation