[1] Gao Y, Yin X B, Wang T. PCR assay for enteropathogenic bacteria and evaluation of its application value[J]. Capital Food Medicine, 26, 101(2019).
[2] Pannetier C. PCR[J]. Immunology Today, 17, 590(1996).
[3] Vinner L, Fomsgaard A. Inactivation of orthopoxvirus for diagnostic PCR analysis[J]. Journal of Virological Methods, 146, 401-404(2007). http://europepmc.org/abstract/MED/17850891
[4] Zhang M. Rapid identification of species' blood based on Raman spectroscopy[D]. Nanchang: Nanchang University(2018).
[5] McLaughlin G, Doty K C, Lednev I K. Raman spectroscopy of blood for species identification[J]. Analytical Chemistry, 86, 11628-11633(2014). http://pubs.acs.org/doi/10.1021/ac5026368
[6] Wang S, Haishan Z. Real-time in vivo Raman spectroscopy and its clinical applications in early cancer detection[J]. Chinese Journal of Lasers, 45, 0207002(2018).
[7] Zhang Y J, Zhang F C, Fu X H et al. Detection of fatty acid content in mixed oil by Raman spectroscopy based on ABC-SVR algorithm[J]. Spectroscopy and Spectral Analysis, 39, 2147-2152(2019).
[8] Wu C W, Shi R J, Zeng W D. Mineral Raman spectral recognition based on Siamese network[J]. Laser & Optoelectronics Progress, 57, 093301(2020).
[9] Žuvela P, Lin K, Shu C et al. Fiber-optic Raman spectroscopy with nature-inspired genetic algorithms enhances real-time in vivo detection and diagnosis of nasopharyngeal carcinoma[J]. Analytical Chemistry, 91, 8101-8108(2019). http://pubs.acs.org/doi/10.1021/acs.analchem.9b00173
[10] Saldanha Honorato R, de Juan A N. Use of Raman spectroscopy and chemometrics to distinguish blue ballpoint pen inks[J]. Forensic Science International, 249, 73-82(2015). http://europepmc.org/abstract/med/25679985
[11] Fang K N, Wu J B, Zhu J P et al. A review of technologies on random forests[J]. Statistics & Information Forum, 26, 32-38(2011).
[12] Ma L. Research on optimization and improvement of random forests algorithm[D]. Guangzhou: Jinan University(2016).
[13] Xie J F, Luo J, Xu M et al[J]. Study on identifi cation of 100% cotton textile by Raman spectroscopy and random forest method China Fiber Inspection, 2014, 76-78.
[14] Vigneau E, Courcoux P, Symoneaux R et al. Random forests: a machine learning methodology to highlight the volatile organic compounds involved in olfactory perception[J]. Food Quality and Preference, 68, 135-145(2018). http://www.sciencedirect.com/science/article/pii/S0950329318301599
[15] Lin K, Hu Y, Kong G. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model[J]. International Journal of Medical Informatics, 125, 55-61(2019).
[16] Huang J H, Xie H L, Yan J et al. Using random forest to classify T-cell epitopes based on amino acid properties and molecular features[J]. Analytica Chimica Acta, 804, 70-75(2013). http://old.med.wanfangdata.com.cn/viewHTMLEn/PeriodicalPaper_PM24267065.aspx
[17] Shi R J, Xia F Z, Zeng W D et al. Raman spectroscopic classification of foodborne pathogenic bacteria based on PCA-stacking model[J]. Laser & Optoelectronics Progress, 56, 043003(2019).
[18] Han X H, Zhang Y H, Sun F J et al. Method for determining index weight based on principal component analysis[J]. Journal of Sichuan Ordnance, 33, 124-126(2012).
[19] Li X R. Compare and application of principal component analysis, factor analysis and clustering analysis[J]. Journal of Shandong Education Institute, 22, 23-26(2007).
[20] Lei L P. Curve smooth denoising based on Savitzky-Golay algorithm[J]. Computer and Information Technology, 22, 30-31(2014).
[21] Zhu L L, Feng A M, Jin S Z et al. Fluorescence suppression methods in Raman spectroscopy detection and their application analysis[J]. Laser & Optoelectronics Progress, 55, 090005(2018).
[22] Hu J X, Zhang G J. K-fold cross-validation based selected ensemble classification algorithm[J]. Bulletin of Science and Technology, 29, 115-117(2013).
[23] Bao Q L, Ding J L, Wang J Z. Prediction of soil moisture content by selecting spectral characteristics using random forest method[J]. Laser & Optoelectronics Progress, 55, 113002(2018).