• Chinese Journal of Lasers
  • Vol. 48, Issue 3, 0311002 (2021)
Qi Wang1, Wandan Zeng1、*, Zhiping Xia2、*, Zhiping Li2, and Han Qu2
Author Affiliations
  • 1College of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai 201418, China
  • 2Military Veterinary Institute, Changchun, Jilin 130062, China
  • show less
    DOI: 10.3788/CJL202148.0311002 Cite this Article Set citation alerts
    Qi Wang, Wandan Zeng, Zhiping Xia, Zhiping Li, Han Qu. Recognition of Food-Borne Pathogenic Bacteria by Raman Spectroscopy Based on Random Forest Algorithm[J]. Chinese Journal of Lasers, 2021, 48(3): 0311002 Copy Citation Text show less
    Original Raman spectra
    Fig. 1. Original Raman spectra
    Raman spectra after normalization
    Fig. 2. Raman spectra after normalization
    Raman spectrum after Savitzky-Golay processing
    Fig. 3. Raman spectrum after Savitzky-Golay processing
    Pareto chart of principle components
    Fig. 4. Pareto chart of principle components
    Frame of random forest algorithm
    Fig. 5. Frame of random forest algorithm
    Model accuracy change with n_estimators
    Fig. 6. Model accuracy change with n_estimators
    Model accuracy change with max_depth
    Fig. 7. Model accuracy change with max_depth
    10-fold cross-validation diagram
    Fig. 8. 10-fold cross-validation diagram
    NumberLatin name
    10869Yersinia enterocolitica
    10870Klebsiella pneumoniae
    21482Salmonella enterica subsp. enterica serovarInfantis
    21530Escherichia coli EHEC O157:H7
    21534Shigella flexneri
    21560Cronobacter sakazakii
    21600Staphylococcus aureus
    21617Vibrio parahaemolyticus
    22933Acinetobacter baumannii
    22956Salmonella enterica subsp. enterica serovarTyphimurium
    23794Vibrio cholerae
    Table 1. CICC numbers and names of eleven food-borne pathogenic bacteria
    Decision tree algorithm
    Input: sample X, sample numbers N, feature counts M
    Output:Decision Tree model
    X→for bagging∥processing X with bagging cycles
    end for
    while extracting ntry(ntry=N)→Xtrain do
    Mmtry(mtryM)∥ random selection of mtry attributes
    mtry→the best node
    XXsamples// build samples using Bootstrap
    end while
    for (itree=0; 1<itreeNtree; itree++)
    ∥ node splitting by optimal attributes to generate decision trees
    end for
    end procedure
    Table 2. Work process of decision tree algorithm
    Food-borne pathogenic bacteria prediction algorithm
    Input: sample X, training set Xtrain, test set Xtest
    Output: K trees, prediction result r
    for all i = 1 to K do
    while jN do
    rowsample=rowsample+selectXtrain
    j++
    end while
    while stop condition not true do
    colsample-selectrowsample
    split_Attribute-min{Gini(colsample)}
    ∥ classification attributes are determined by the minimum Gini value
    tree-AddNodesplit_Attribute
    end while
    leaf_node←node
    end for
    for all i-1 to K do
    Ri=Ti_PredictDtest
    R=MostCommon(Ri)
    end for
    end procedure
    Table 3. Process of algorithm used for prediction of food-borne pathogenic bacteria
    ModelAccuracy /%
    PCA + KNN(K-nearest neighbors)88.19
    PCA + logistic regression88.25
    PCA + SVM(support vector machines)83.86
    PCA + decision tree82.63
    PCA + RF(our)91.36
    Table 4. Accuracy of each model
    Qi Wang, Wandan Zeng, Zhiping Xia, Zhiping Li, Han Qu. Recognition of Food-Borne Pathogenic Bacteria by Raman Spectroscopy Based on Random Forest Algorithm[J]. Chinese Journal of Lasers, 2021, 48(3): 0311002
    Download Citation