[1] Z. Apalla, A. Lallas, E. Sotiriou, L. Elizabeth, I. Demetrios, “Epidemiological trends in skin cancer," Dermatol. Pract. Concept. 7(2), 1–6 (2017).
[2] Z. Apalla, D. Nashan, R. B. Weller, X. Castellsague, “Skin cancer: Epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches," Dermatol. Ther. 7(1), 5–19 (2017).
[3] American Cancer Society, Cancer Facts & Figures 2018, https://www.cancer.org/research/cancer-factsstatistics/all-cancer-facts-figures/cancer-facts-figures-2018.html (2018).
[4] National Cancer Institute, SEER stats fact sheets: melanoma of the skin, https://seer.cancer.gov/statfacts/html/melan.html (2018).
[5] J. Yang, S. Xiong, “Diagnosis and treatment of human basal cell carcinoma and squamous cell carcinoma," China Mod. Med. 18(11), 13–15 (2011).
[6] A. Luu, L. Doerwald-Munoz, O. Stapiak, “An evaluation of two approaches to skin bolus design for patients receiving radiotherapy for head and neck cancers," J. Med. Imaging Radiat. Sci. 46(3), 37–42 (2014).
[7] Z. Tang, J. Shi, M. Cai, D. Xue, “An analysis of skin melanoma incidence and its influencing factors in China," China Cancer 23(10), 829–833 (2014).
[8] Y. Lu, X. Peng, S. Fan, S. Liu, J. Qu, “Application of new optical methods in skin cancer research," Int. J. Dermatol. Venereol. 40(6), 383–385 (2014).
[9] M. Y. Berezin, S. Achilefu, “Fluorescence lifetime measurements and biological imaging," Chem. Rev. 110(5), 2641–2684 (2010).
[10] V. Ntziachristos, “Going deeper than microscopy: The optical imaging frontier in biology," Nat. Methods 7(8), 603–614 (2010).
[11] K. Nienhaus, G. U. Nienhaus, “Where do we stand with super-resolution optical microscopy," J. Mol. Biol. 428(2), 308–322 (2016).
[12] K. Konig, “Clinical multiphoton tomography," J. Biophoton. 1(1), 13–23 (2008).
[13] S. G. Stanciu, M. Costache, D. E. Tranca, R. Hristu, M. Popescu, V. Enache, G. A. Stanciu, “Towards imaging skin cancer by apertureless scanning near-field optical microscopy," U.P.B. Sci. Bull., Ser. A. Appl. Math. Phys. 78(2), 235–244 (2016).
[14] X. Zhang, “Imaging technology in modern microsystems," Opt. Instrum. 37(6), 550–560 (2015).
[15] V. V. Ghukasyan, F. J. Kao, “Monitoring cellular metabolism with fluorescence lifetime of reduced nicotinamide adenine dinucleotide," J. Phys. Chem. 113(27), 11532–11540 (2009).
[16] M. W. Conklin, P. P. Provenzano, K. W. Eliceiri, R. Sullivan, P. J. Keely, “Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast," Cell Biochem. Biophys. 53(3), 145–157 (2009).
[17] L. Marcu, “Fluorescence lifetime techniques in medical applications," Ann. Biomed. Eng. 40(2), 304–331 (2012).
[18] D. Chorvat, A. Chorvatova, “Multi-wavelength fluorescence lifetime spectroscopy: A new approach to the study of endogenous fluorescence in living cells and tissues," Laser Phys. Lett. 6(3), 175–193 (2009).
[19] M. S. Roberts, Y. Dancik, T. W. Prow, C. A. Thorling, L. L. Lin, J. E. Grice, T. A. Robertson, K. K€onig, W. Becker, “Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy," Eur. J. Pharm. Biopharm. 77(3), 469–488 (2011).
[20] J. Leppert, J. Krajewski, S. R. Kantelhardt, S. M. Schlaffer, N. Petkus, E. Reusche, G. Hüttmann, A. Giese, “Multiphoton excitation of autofluorescence for microscopy of glioma tissue," Neurosurgery 58(4), 759–767 (2006).
[21] I. Riemann, A. Ehlers, R. Le Harzic, E. Dimitrow, M. Kaatz, P. Elsner, R. Bückle, K. Koenig, “Noninvasive analysis/diagnosis of human normal and melanoma skin tissues with two-photon FLIM in vivo," Proc. SPIE 6842, 684205 (2008).
[22] S. Fan, X. Peng, L. Liu, S. Liu, Y. Lu, J. Qu, “Diagnosis of basal cell carcinoma by two photon excited fluorescence combined with lifetime imaging," Proc. SPIE 8948, 89482E (2014).
[23] A. Pliss, X. Peng, L. Liu, A. Kuzmin, Y. Wang, J. Qu, Y. Li, P. N. Prasad, “Single cell assay for molecular diagnostics and medicine: Monitoring intracellular concentrations of macromolecules by two-photon fluorescence lifetime imaging," Theranostics 5(9), 919–930 (2015).
[24] A. Pliss, S. M. Levchenko, L. Liu, X. Peng, T. Y. Ohulchanskyy, I. Roy, A. N. Kuzmin, J. Qu, P. N. Prasad, “Cycles of protein condensation and discharge in nuclear organelles studied by fluorescence lifetime imaging," Nat. Commun. 10(1), 455 (2019).
[25] TuanVo-Dinh, Biomedical Photonics Handbook, CRC Publishing Company, Florida (2003).
[26] A. T. N. Kumar, S. B. Raymond, B. J. Bacskai, D. A. Boas, “Comparison of frequency-domain and time-domain fluorescence lifetime tomography," Opt. Lett. 33(5), 470–472 (2008).
[27] E. Gratton, S. Breusegem, J. Sutin, Q. Q. Ruan, N. Barry, “Fluorescence lifetime imaging of twophoton microscopy: Time domain and frequency domain method," J. Biomed. Opt. 8(3), 381–390 (2003).
[28] L. Liu, J. Qu, Z. Lin, B. Guo, H. Niu, “Fluorescence lifetime imaging and its biomedical applications," J. Shenzhen Univ. Sci. Eng. 22(2), 133–141 (2005).
[29] W. Becker, A. Bergmann, K. Koenig, U. Tirlapur, “Picosecond fluorescence lifetime microscopy by TCSPC imaging," Proc. SPIE 4262, 414–419 (2001).
[30] X. Liu, D. Lin, Q. Wu, W. Yan, T. Luo, Z. Yang, J. Qu, “Recent progress of fluorescence lifetime imaging microscopy technology and its application," Acta Phys. Sin. 67(17), 27–40 (2018).
[31] K. Suhling, L. M. Hirvonen, J. A. Levitt, P. H. Chung, C. Tregido, A. Le Marois, D. Rusakov, K. Zheng, S. Ameer-Beg, S. Poland, S. Coelho, R. Dimble, “Fluorescence lifetime imaging (FLIM): Basic concepts and recent applications," Springer Ser. Chem. Phys. 111, 119–188 (2015).
[32] L. Liu, A. Pliss, X. Peng, A. Kuzmin, J. Qu, P. N. Prasa, “Mapping of intracellular concentrations of macromolecules by twophoton excited fluorescence lifetime imaging," Proc. SPIE 9712, 971221 (2016).
[33] S. A. Gandhi, J. Kampp, “Skin cancer epidemiology, detection, and management," Med. Clin. N. Am. 99(6), 1323–1335 (2015).
[34] N. P. Galletly, J. Mcginty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D. S. Elson, M. A. Neil, A. C. Chu, P. M. French, G. W. Stamp, “Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin," Br. J. Dermatol. 159(1), 152–161 (2008).
[35] R. Patalay, C. B. Talbot, L. Munro, H. G. Breunig, “Fluorescence lifetime imaging of skin cancer," Proc. SPIE 7883, 78830A (2011).
[36] R. Patalay, C. Talbot, Y. Alexandrov, I. Munro, M. A. Neil, K. K€onig, P. M. French, A. Chu, G. W. Stamp, C. Dunsby, “Quantification of cellular autofluorescence of human skin using multiphoton tomogr aphy and fluorescence lifetime imaging in two spectral detection channels," Biomed. Opt. Exp. 2(12), 3295–3308 (2012).
[37] S. Seidenari, F. Arginelli, C. Dunsby, P. French, K. Koenig, C. Magnoni, M. Manfredini, C. Talbot, G. Ponti, “Multiphoton laser tomography and fluorescence lifetime imaging of basal cell carcinoma: Morphologic features for non-invasive diagnostics," Exp. Dermatol. 21(11), 831–836 (2012).
[38] T. Luo, Y. Lu, S. Liu, D. Lin, J. Qu, “Phasor-FLIM as a screening tool for the differential diagnosis of actinic keratosis, Bowen's disease and basal cell carcinoma," Anal. Chem. 89(15), 8104–8111 (2017).
[39] T. Zhao, J. Zheng, “Advances in the research of cutaneous squamous cell carcinoma," Int. J. Dermatol. 32(4), 247–250 (2006).
[40] E. Martín-Villar, B. Fernandez-Munoz, M. Parsons, M. M. Yurrita, D. Megías, E. Perez-Gómez, G. E. Jones, M. Quintanilla, “Podoplanin associates with cd44 to promote directional cell migration," Mol. Biol. Cell 21(24), 4387–4399 (2010).
[41] C. R. Miller, M. G. Nichols, “Metabolic profiling of the skin to monitor the onset and progression of squamous cell carcinoma through time- and wavelength-resolved fluorescence lifetime imaging," Biophys. J. 108(2), 478a (2015).
[42] J. P. Miller, L. M. Habimana-Gri±n, T. S. Edwards, S. Achilefu, “Multimodal fluorescence molecular imaging for in vivo characterization of skin cancer using endogenous and exogenous fluorophores," J. Biomed. Opt. 22(6), 066007 (2017).
[43] S. LevêqueFort, M. P. Fontaineaupart, G. Roger, P. Georges, “Fluorescence-lifetime imaging with a multifocal two-photon microscope," Opt. Lett. 29(24), 2884–2886 (2004).
[44] R. Cicchi, S. Sestini, V. D. Giorgi, D. Massi, T. Lotti, F. S. Pavone, “Multidimensional two-photon imaging of diseased skin," Proc. SPIE 6859, 685903 (2008).
[45] E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. Koenig, M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis," Exp. Dermatol. 18(6), 509–515 (2009).
[46] L. Pires, M. S. Nogueira, S. Pratavieira, L. Moriyama, C. Kurachi, “Time-resolved fluorescence lifetime for cutaneous melanoma detection," Biomed. Opt. Express 5(9), 3080–3089 (2014).
[47] M. N. Pastore, H. Studier, C. S. Bonder, M. Roberts, “Non-invasive metabolic imaging of melanoma progression," Exp. Dermatol. 26(7), 607–614 (2017).