• Journal of Innovative Optical Health Sciences
  • Vol. 12, Issue 5, 1930004 (2019)
Lixin Liu1,*, Qianqian Yang1, Meiling Zhang1, Zhaoqing Wu1, and Ping Xue2
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, P. R. China
  • 2State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, P. R. China
  • show less
    DOI: 10.1142/s1793545819300040 Cite this Article
    Lixin Liu, Qianqian Yang, Meiling Zhang, Zhaoqing Wu, Ping Xue. Fluorescence lifetime imaging microscopy and its applications in skin cancer diagnosis[J]. Journal of Innovative Optical Health Sciences, 2019, 12(5): 1930004 Copy Citation Text show less
    References

    [1] Z. Apalla, A. Lallas, E. Sotiriou, L. Elizabeth, I. Demetrios, “Epidemiological trends in skin cancer," Dermatol. Pract. Concept. 7(2), 1–6 (2017).

    [2] Z. Apalla, D. Nashan, R. B. Weller, X. Castellsague, “Skin cancer: Epidemiology, disease burden, pathophysiology, diagnosis, and therapeutic approaches," Dermatol. Ther. 7(1), 5–19 (2017).

    [3] American Cancer Society, Cancer Facts & Figures 2018, https://www.cancer.org/research/cancer-factsstatistics/all-cancer-facts-figures/cancer-facts-figures-2018.html (2018).

    [4] National Cancer Institute, SEER stats fact sheets: melanoma of the skin, https://seer.cancer.gov/statfacts/html/melan.html (2018).

    [5] J. Yang, S. Xiong, “Diagnosis and treatment of human basal cell carcinoma and squamous cell carcinoma," China Mod. Med. 18(11), 13–15 (2011).

    [6] A. Luu, L. Doerwald-Munoz, O. Stapiak, “An evaluation of two approaches to skin bolus design for patients receiving radiotherapy for head and neck cancers," J. Med. Imaging Radiat. Sci. 46(3), 37–42 (2014).

    [7] Z. Tang, J. Shi, M. Cai, D. Xue, “An analysis of skin melanoma incidence and its influencing factors in China," China Cancer 23(10), 829–833 (2014).

    [8] Y. Lu, X. Peng, S. Fan, S. Liu, J. Qu, “Application of new optical methods in skin cancer research," Int. J. Dermatol. Venereol. 40(6), 383–385 (2014).

    [9] M. Y. Berezin, S. Achilefu, “Fluorescence lifetime measurements and biological imaging," Chem. Rev. 110(5), 2641–2684 (2010).

    [10] V. Ntziachristos, “Going deeper than microscopy: The optical imaging frontier in biology," Nat. Methods 7(8), 603–614 (2010).

    [11] K. Nienhaus, G. U. Nienhaus, “Where do we stand with super-resolution optical microscopy," J. Mol. Biol. 428(2), 308–322 (2016).

    [12] K. Konig, “Clinical multiphoton tomography," J. Biophoton. 1(1), 13–23 (2008).

    [13] S. G. Stanciu, M. Costache, D. E. Tranca, R. Hristu, M. Popescu, V. Enache, G. A. Stanciu, “Towards imaging skin cancer by apertureless scanning near-field optical microscopy," U.P.B. Sci. Bull., Ser. A. Appl. Math. Phys. 78(2), 235–244 (2016).

    [14] X. Zhang, “Imaging technology in modern microsystems," Opt. Instrum. 37(6), 550–560 (2015).

    [15] V. V. Ghukasyan, F. J. Kao, “Monitoring cellular metabolism with fluorescence lifetime of reduced nicotinamide adenine dinucleotide," J. Phys. Chem. 113(27), 11532–11540 (2009).

    [16] M. W. Conklin, P. P. Provenzano, K. W. Eliceiri, R. Sullivan, P. J. Keely, “Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast," Cell Biochem. Biophys. 53(3), 145–157 (2009).

    [17] L. Marcu, “Fluorescence lifetime techniques in medical applications," Ann. Biomed. Eng. 40(2), 304–331 (2012).

    [18] D. Chorvat, A. Chorvatova, “Multi-wavelength fluorescence lifetime spectroscopy: A new approach to the study of endogenous fluorescence in living cells and tissues," Laser Phys. Lett. 6(3), 175–193 (2009).

    [19] M. S. Roberts, Y. Dancik, T. W. Prow, C. A. Thorling, L. L. Lin, J. E. Grice, T. A. Robertson, K. K€onig, W. Becker, “Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy," Eur. J. Pharm. Biopharm. 77(3), 469–488 (2011).

    [20] J. Leppert, J. Krajewski, S. R. Kantelhardt, S. M. Schlaffer, N. Petkus, E. Reusche, G. Hüttmann, A. Giese, “Multiphoton excitation of autofluorescence for microscopy of glioma tissue," Neurosurgery 58(4), 759–767 (2006).

    [21] I. Riemann, A. Ehlers, R. Le Harzic, E. Dimitrow, M. Kaatz, P. Elsner, R. Bückle, K. Koenig, “Noninvasive analysis/diagnosis of human normal and melanoma skin tissues with two-photon FLIM in vivo," Proc. SPIE 6842, 684205 (2008).

    [22] S. Fan, X. Peng, L. Liu, S. Liu, Y. Lu, J. Qu, “Diagnosis of basal cell carcinoma by two photon excited fluorescence combined with lifetime imaging," Proc. SPIE 8948, 89482E (2014).

    [23] A. Pliss, X. Peng, L. Liu, A. Kuzmin, Y. Wang, J. Qu, Y. Li, P. N. Prasad, “Single cell assay for molecular diagnostics and medicine: Monitoring intracellular concentrations of macromolecules by two-photon fluorescence lifetime imaging," Theranostics 5(9), 919–930 (2015).

    [24] A. Pliss, S. M. Levchenko, L. Liu, X. Peng, T. Y. Ohulchanskyy, I. Roy, A. N. Kuzmin, J. Qu, P. N. Prasad, “Cycles of protein condensation and discharge in nuclear organelles studied by fluorescence lifetime imaging," Nat. Commun. 10(1), 455 (2019).

    [25] TuanVo-Dinh, Biomedical Photonics Handbook, CRC Publishing Company, Florida (2003).

    [26] A. T. N. Kumar, S. B. Raymond, B. J. Bacskai, D. A. Boas, “Comparison of frequency-domain and time-domain fluorescence lifetime tomography," Opt. Lett. 33(5), 470–472 (2008).

    [27] E. Gratton, S. Breusegem, J. Sutin, Q. Q. Ruan, N. Barry, “Fluorescence lifetime imaging of twophoton microscopy: Time domain and frequency domain method," J. Biomed. Opt. 8(3), 381–390 (2003).

    [28] L. Liu, J. Qu, Z. Lin, B. Guo, H. Niu, “Fluorescence lifetime imaging and its biomedical applications," J. Shenzhen Univ. Sci. Eng. 22(2), 133–141 (2005).

    [29] W. Becker, A. Bergmann, K. Koenig, U. Tirlapur, “Picosecond fluorescence lifetime microscopy by TCSPC imaging," Proc. SPIE 4262, 414–419 (2001).

    [30] X. Liu, D. Lin, Q. Wu, W. Yan, T. Luo, Z. Yang, J. Qu, “Recent progress of fluorescence lifetime imaging microscopy technology and its application," Acta Phys. Sin. 67(17), 27–40 (2018).

    [31] K. Suhling, L. M. Hirvonen, J. A. Levitt, P. H. Chung, C. Tregido, A. Le Marois, D. Rusakov, K. Zheng, S. Ameer-Beg, S. Poland, S. Coelho, R. Dimble, “Fluorescence lifetime imaging (FLIM): Basic concepts and recent applications," Springer Ser. Chem. Phys. 111, 119–188 (2015).

    [32] L. Liu, A. Pliss, X. Peng, A. Kuzmin, J. Qu, P. N. Prasa, “Mapping of intracellular concentrations of macromolecules by twophoton excited fluorescence lifetime imaging," Proc. SPIE 9712, 971221 (2016).

    [33] S. A. Gandhi, J. Kampp, “Skin cancer epidemiology, detection, and management," Med. Clin. N. Am. 99(6), 1323–1335 (2015).

    [34] N. P. Galletly, J. Mcginty, C. Dunsby, F. Teixeira, J. Requejo-Isidro, I. Munro, D. S. Elson, M. A. Neil, A. C. Chu, P. M. French, G. W. Stamp, “Fluorescence lifetime imaging distinguishes basal cell carcinoma from surrounding uninvolved skin," Br. J. Dermatol. 159(1), 152–161 (2008).

    [35] R. Patalay, C. B. Talbot, L. Munro, H. G. Breunig, “Fluorescence lifetime imaging of skin cancer," Proc. SPIE 7883, 78830A (2011).

    [36] R. Patalay, C. Talbot, Y. Alexandrov, I. Munro, M. A. Neil, K. K€onig, P. M. French, A. Chu, G. W. Stamp, C. Dunsby, “Quantification of cellular autofluorescence of human skin using multiphoton tomogr aphy and fluorescence lifetime imaging in two spectral detection channels," Biomed. Opt. Exp. 2(12), 3295–3308 (2012).

    [37] S. Seidenari, F. Arginelli, C. Dunsby, P. French, K. Koenig, C. Magnoni, M. Manfredini, C. Talbot, G. Ponti, “Multiphoton laser tomography and fluorescence lifetime imaging of basal cell carcinoma: Morphologic features for non-invasive diagnostics," Exp. Dermatol. 21(11), 831–836 (2012).

    [38] T. Luo, Y. Lu, S. Liu, D. Lin, J. Qu, “Phasor-FLIM as a screening tool for the differential diagnosis of actinic keratosis, Bowen's disease and basal cell carcinoma," Anal. Chem. 89(15), 8104–8111 (2017).

    [39] T. Zhao, J. Zheng, “Advances in the research of cutaneous squamous cell carcinoma," Int. J. Dermatol. 32(4), 247–250 (2006).

    [40] E. Martín-Villar, B. Fernandez-Munoz, M. Parsons, M. M. Yurrita, D. Megías, E. Perez-Gómez, G. E. Jones, M. Quintanilla, “Podoplanin associates with cd44 to promote directional cell migration," Mol. Biol. Cell 21(24), 4387–4399 (2010).

    [41] C. R. Miller, M. G. Nichols, “Metabolic profiling of the skin to monitor the onset and progression of squamous cell carcinoma through time- and wavelength-resolved fluorescence lifetime imaging," Biophys. J. 108(2), 478a (2015).

    [42] J. P. Miller, L. M. Habimana-Gri±n, T. S. Edwards, S. Achilefu, “Multimodal fluorescence molecular imaging for in vivo characterization of skin cancer using endogenous and exogenous fluorophores," J. Biomed. Opt. 22(6), 066007 (2017).

    [43] S. LevêqueFort, M. P. Fontaineaupart, G. Roger, P. Georges, “Fluorescence-lifetime imaging with a multifocal two-photon microscope," Opt. Lett. 29(24), 2884–2886 (2004).

    [44] R. Cicchi, S. Sestini, V. D. Giorgi, D. Massi, T. Lotti, F. S. Pavone, “Multidimensional two-photon imaging of diseased skin," Proc. SPIE 6859, 685903 (2008).

    [45] E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. Koenig, M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis," Exp. Dermatol. 18(6), 509–515 (2009).

    [46] L. Pires, M. S. Nogueira, S. Pratavieira, L. Moriyama, C. Kurachi, “Time-resolved fluorescence lifetime for cutaneous melanoma detection," Biomed. Opt. Express 5(9), 3080–3089 (2014).

    [47] M. N. Pastore, H. Studier, C. S. Bonder, M. Roberts, “Non-invasive metabolic imaging of melanoma progression," Exp. Dermatol. 26(7), 607–614 (2017).

    Lixin Liu, Qianqian Yang, Meiling Zhang, Zhaoqing Wu, Ping Xue. Fluorescence lifetime imaging microscopy and its applications in skin cancer diagnosis[J]. Journal of Innovative Optical Health Sciences, 2019, 12(5): 1930004
    Download Citation