• Photonic Sensors
  • Vol. 13, Issue 1, 230126 (2023)
Ye YUAN, Zilong YAN, Peifeng ZHANG, Zhu CHANG, Fengjiang PENG, Ruotong CHEN, Zhenyuan YANG, Shizheng CHEN, Qing ZHAO, and Xiaoping HUANG*
Author Affiliations
  • School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 610054, China
  • show less
    DOI: 10.1007/s13320-022-0667-4 Cite this Article
    Ye YUAN, Zilong YAN, Peifeng ZHANG, Zhu CHANG, Fengjiang PENG, Ruotong CHEN, Zhenyuan YANG, Shizheng CHEN, Qing ZHAO, Xiaoping HUANG. A Broadband Achromatic Dielectric Planar Metalens in Mid-IR Range[J]. Photonic Sensors, 2023, 13(1): 230126 Copy Citation Text show less
    References

    [1] L. Zhang, J. Ding, H. Y. Zheng, S. S. An, H. T. Lin, B. W. Zheng, et al., “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nature Communications, 2018, 9(1): 1-9.

    [2] Y. Yang, Q. Zhao, L. Liu, Y. Liu, C. Rosales-Guzmán, and C. W. Qiu, “Manipulation of orbital-angular-momentum spectrum using pinhole plates,” Physical Review Applied, 2019, 12(6): 064007.

    [3] P. Sun, M. Zhang, F. Dong, L. Feng, and W. Chu, “Broadband achromatic polarization insensitive metalens over 950 nm bandwidth in the visible and near-infrared,” Chinese Optics Letters, 2022, 20(1): 013601.

    [4] Y. Cui, G. Zheng, M. Chen, Y. Zhang, Y. Yang, J. Tao, et al., “Reconfigurable continuous-zoom metalens in visible band,” Chinese Optics Letters, 2019, 17(11): 111603.

    [5] F. F. Li, H. J. Liu, N. Huang, and Z. L. Wang, “Near infrared step-zoom doublet lens based on dielectric metasurfaces,” Journal of Optics, 2018, 20(7): 075105.

    [6] M. Khorasaninejad and F. Capasso, “Metalens: versatile multifunctional photonic components,” Science, 2017, 358: 1146.

    [7] S. Y. Zhang, M. H. Kim, F. Aieta, A. She, T. Mansuripur, I. Gabay, et al., “High efficiency near diffraction-limited mid-infrared flat lenses based on metasurface reflectarrays,” Optics Express, 2016, 24(16): 18024-18034.

    [8] A. Wang, Z. M. Chen, and Y. P. Dan, “Planar metalens in the mid-infrared,” AIP Advances, 2019, 9(8): 085327.

    [9] T. Liu, J. Hu, L. Zhu, R. Zhou, C. Zhang, C. Wang, et al., “Large effective aperture metalens based on optical sparse aperture system,” Chinese Optics Letters, 2020, 18(10): 100001.

    [10] Y. Zhao, Y. Su, X. Hou, and M. Hong, “Directional sliding of water: biomimetic snake scale surfaces,” Opto-Electronic Advances, 2021, 4(4): 04210008.

    [11] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalens at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science, 2016, 352: 1190-1194.

    [12] C. Saeidia and D. V. D. Weide, “Wideband plasmonic focusing metasurfaces,” Applied Physics Letters, 2014, 105(5): 053107.

    [13] H. S. Ee and H. G. Park, “Design of tunable silicon metasurfaces with cross-polarization transmittance over 80%,” Physica Scripta, 2018, 93(8): 085501.

    [14] R. Z. Li, F. Shen, Y. X. Sun, W. Wang, L. Zhu, and Z. Y. Guo, “Broadband, high-efficiency, arbitrary focusing lens by a holographic dielectric meta-reflectarray,” Journal of Physics D: Applied Physics, 2016, 49(14): 145101.

    [15] F. Zhang, H. L. Yu, J. W. Fang, M. Zhang, S. C Chen, J. Wang, et al., “Efficient generation and tight focusing of radially polarized beam from linearly polarized beam with all-dielectric metasurface,” Optics Express, 2016, 24(6): 6656-6664.

    [16] M. K. Chen, Y. F. Wu, L. Feng, Q. B. Fan, M. H. Lu, T. Xu, et al., “Principles, functions, and applications of optical meta-lens,” Advanced Optical Materials, 2021, 9(4): 2001414.

    [17] L. Li, Z. X. Liu, X. F. Ren, S. M. Wang, V. Su, M. K. Chen, et al., “Metalens-array-based high-dimensional and multiphoton quantum source,” Science, 2020, 368(6498): 1487-1490.

    [18] M. X. Zhao, M. K. Chen, Z. P. Zhuang, Y. W. Zhang, A. Chen, Q. M. Chen, et al., “Phase characterization of metalens,” Light: Science & Applications, 2021, 10(4): 551-561.

    [19] F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science, 2015, 347(6228): 1342-1345.

    [20] Q. Wang, X. Q. Zhang, Y. H. Xu, Z. Tian, J. Q. Gu, W. S. Yue, et al., “A broadband metasurface-based terahertz flat-lens array,” Advanced Optical Materials, 2015, 3(6): 779-785.

    [21] H. W. Liang, Q. L. Lin, X. S. Xie, Q. Sun, Y. Wang, L. D. Zhou, et al., “Ultrahigh numerical aperture metalens at visible wavelengths,” Nano Letters, 2018, 18(7): 4460-4466.

    [22] A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nature Nanotechnology, 2015, 10(11): 937-943.

    [23] K. Li, Y. I. Guo, M. B. Pu, X. Li, X. L. Ma, Z. Y. Zhao, et al., “Dispersion controlling meta-lens at visible frequency,” Optics Express, 2017, 25(18): 21419-21427.

    [24] N. F. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nature Materials, 2014, 13: 139-140.

    [25] Z. Li, E. Palacio, S. Butun, and K. Aydin, “Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting,” Nano Letters, 2015, 15(3): 1615-1621.

    [26] S. M. Wang, P. C. Wu, S. Vin-Cent, L. Yi-Chieh, C. H. Chu, C. Jia-Wern, et al., “Broadband achromatic optical metasurface devices,” Nature Communications, 2017, 8(1): 1-9.

    [27] M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, et al., “Achromatic metasurface lens at telecommunication wavelengths,” Nano Letters, 2015, 15(8): 5358-5363.

    [28] D. Lin, P. Y. Fan, E. Hasman, and M. L. Brongersma, “Dielectric gradient metasurface optical elements,” Science, 2014, 345(6194): 298-302.

    [29] H. H. Hsiao, Y. H. Chen, R. J. Lin, P. C. Wu, S. M. Wang, B. H. Chen, et al., “Integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation,” Advanced Optical Materials, 2018, 6(12): 1800021.

    [30] K. Ou, F. L. Yu, G. H. Li, W. J. Wang, A. E. Miroshnichenko, L. J. Huang, et al., “Mid-infrared polarization-controlled broadband achromatic metadevice,” Science Advances, 2020, 6(37): eabc0711.

    [31] S. Shrestha, A. C. Overvig, M. Lu, A. Stein, and N. F. Yu, “Broadband achromatic dielectric metalens,” Light: Science & Applications, 2018, 7(1): 1-11.

    [32] Z. J. Zhang, Z. C. Cui, Y. Liu, S. C. Wang, I. Staude, Z. Y. Yang, et al., “Design of a broadband achromatic dielectric metalens for linear polarization in the near-infrared spectrum,” OSA Continum, 2018, 1(3): 882-890.

    [33] Y. J. Wang, Q. M. Chen, W. H. Yang, Z. H. Ji, L. M. Jin, X. Ma, et al., “High-efficiency broadband achromatic metalens for near-IR biological imaging window,” Nature Communications, 2021, 12(1): 1-7.

    [34] S. Wang, P. C. Wu, V. C. Su, Y. C. Lai, M. K. Chen, H. Kuo, et al., “A broadband achromatic metalens in the visible,” Nature Nanotechnology, 2018, 13(3): 227-232.

    [35] W. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, et al., “A broadband achromatic metalens for focusing and imaging in the visible,” Nature Nanotechnology, 2018, 13(3): 220-226.

    [36] Z. L. Guo, L. H. Tian, F. Shen, H. P. Zhou, and K. Guo, “Mid-infrared polarization devices based on the double-phase modulating dielectric metasurface,” Journal of Physics D: Applied Physics, 2017, 50(25): 254001.

    [37] D. Chandler-Horowitz and P. M. Amirtharaj, “High-accuracy, midinfrared (450 cm-1 ≤ ω ≤ 4 000 cm-1) refractive index values of silicon,” Journal of Applied Physics, 2005, 97(12): 123526.

    [38] M. Herzberge and C. D. Salzber, “Refractive indices of infrared optical materials and color correction of infrared lenses,” Journal of the Optical Society of America, 1962, 52(4): 420-427.

    [39] W. T. Chen, A. Y. Zhu, J. Sisler, Y. W. Huang, K. M. A. Yousef, E. Lee, et al., “Broadband achromatic metasurface-refractive optics,” Nano Letters, 2018, 18(12): 7801-7808.

    [40] F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gaburro, et al., “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Letters, 2012, 12(9): 4932-4936.

    [41] W. H. Ni, X. H. Kou, Z. Yang, and J. F. Wang, “Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods,” ACS Nano, 2009, 2(4): 677-686.

    [42] W. Su, X. Y. Li, J. Bornemann, and R. Gordon, “Theory of nanorod antenna resonances including end-reflection phase,” Physical Review B, 2015, 91(16): 165401.

    Ye YUAN, Zilong YAN, Peifeng ZHANG, Zhu CHANG, Fengjiang PENG, Ruotong CHEN, Zhenyuan YANG, Shizheng CHEN, Qing ZHAO, Xiaoping HUANG. A Broadband Achromatic Dielectric Planar Metalens in Mid-IR Range[J]. Photonic Sensors, 2023, 13(1): 230126
    Download Citation