• Chinese Journal of Lasers
  • Vol. 46, Issue 9, 907001 (2019)
Chen Ningbo1、2, Zhou Huichao2、3, Zhao Huangxuan2, Wang Boquan1、2, Song Liang2, Liu Chengbo2, and Zhang Jianhui1
Author Affiliations
  • 1School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
  • 2Research Lab for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
  • 3Department of Ultrasound, the Third Affiliated Hospital, Sun Yat-Sen University,Guangzhou, Guangdong 510630, China
  • show less
    DOI: 10.3788/CJL201946.0907001 Cite this Article Set citation alerts
    Chen Ningbo, Zhou Huichao, Zhao Huangxuan, Wang Boquan, Song Liang, Liu Chengbo, Zhang Jianhui. High-Resolution Photoacoustic Quantitative Imaging of Tumor Vessels[J]. Chinese Journal of Lasers, 2019, 46(9): 907001 Copy Citation Text show less
    References

    [1] Denekamp J. Inadequate vasculature in solid tumours: consequences for cancer research strategies[J]. BJR Supplement, 24, 111-117(1992). http://europepmc.org/abstract/MED/1290685

    [2] Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors[J]. Annals of Surgery, 175, 409-416(1972). http://europepmc.org/abstract/MED/5077799

    [3] O'Connor B. Jackson A, Parker M, et al. DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents[J]. British Journal of Cancer, 96, 189-195(2007). http://www.ncbi.nlm.nih.gov/pubmed/17211479

    [4] Haubner R, Beer A J, Wang H et al. Positron emission tomography tracers for imaging angiogenesis[J]. European Journal of Nuclear Medicine and Molecular Imaging, 37, 86-103(2010). http://europepmc.org/articles/PMC3629959

    [5] Kiessling F, Greschus S, Lichy M P et al. Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis[J]. Nature Medicine, 10, 1133-1138(2004). http://www.nature.com/nm/journal/v10/n10/abs/nm1101.html

    [6] Ferrara K W. Merritt C R B, Burns P N, et al. Evaluation of tumor angiogenesis with US: imaging, Doppler, and contrast agents[J]. Academic Radiology, 7, 824-839(2000).

    [7] Wang L V, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 335, 1458-1462(2012). http://www.ncbi.nlm.nih.gov/pubmed/22442475

    [8] Maslov K, Zhang H F, Hu S et al. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries[J]. Optics Letters, 33, 929-931(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT02000015000012000149000001&idtype=cvips&gifs=Yes

    [9] Chen Z J, Yang S H, Xing D. Progress and application of photoacoustic microscopy technique[J]. Chinese Journal of Lasers, 45, 0307008(2018).

    [10] Oladipupo S, Hu S, Kovalski J et al. VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting[J]. Proceedings of the National Academy of Sciences of the United States of America, 108, 13264-13269(2011). http://labs.europepmc.org/abstract/PMC/PMC3156154

    [11] Oladipupo S S, Hu S, Santeford A C et al. Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence[J]. Blood, 117, 4142-4153(2011). http://europepmc.org/abstract/med/21307392

    [12] Laufer J, Johnson P, Zhang E et al. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy[J]. Journal of Biomedical Optics, 17, 056016(2012). http://www.ncbi.nlm.nih.gov/pubmed/22612139

    [13] Ruan Q, Xi L, Boye S L et al. Development of an anti-angiogenic therapeutic model combining scAAV2-delivered siRNAs and noninvasive photoacoustic imaging of tumor vasculature development[J]. Cancer Letters, 332, 120-129(2013). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094357/

    [14] Jathoul A P, Laufer J, Ogunlade O et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter[J]. Nature Photonics, 9, 239-246(2015). http://www.nature.com/nphoton/journal/v9/n4/abs/nphoton.2015.22.html

    [15] Valluru K S, Willmann J K. Clinical photoacoustic imaging of cancer[J]. Ultrasonography, 35, 267-280(2016). http://www.ncbi.nlm.nih.gov/pubmed/27669961

    [16] Wang Y T, Xu D, Yang S H et al. Toward in vivo biopsy of melanoma based on photoacoustic and ultrasound dual imaging with an integrated detector[J]. Biomedical Optics Express, 7, 279-286(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC4771448/

    [17] Yang J, Zhang G, Li Q Q et al. Photoacoustic imaging for the evaluation of early tumor response to antivascular treatment[J]. Quantitative Imaging in Medicine and Surgery, 9, 160-170(2019).

    [18] Zhang H F, Maslov K, Stoica G et al. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging[J]. Nature Biotechnology, 24, 848-851(2006). http://europepmc.org/abstract/MED/16823374

    [19] Lin R, Chen J, Wang H et al. Longitudinal label-free optical-resolution photoacoustic microscopy of tumor angiogenesis in vivo[J]. Quantitative Imaging in Medicine and Surgery, 5, 23-29(2015). http://europepmc.org/abstract/med/25694950

    [20] Bi R Z, Balasundaram G, Jeon S. et al. Photoacoustic microscopy for evaluating combretastatin A4 phosphate induced vascular disruption in orthotopic glioma[J]. Journal of Biophotonics, 11, e201700327(2018). http://onlinelibrary.wiley.com/doi/10.1002/jbio.201700327/full

    [21] Wu H Q, Wang H Y, Xie W M et al. Potential applications of photoacoustic imaging in early cancer diagnosis and treatment[J]. Laser & Optoelectronics Progress, 56, 070001(2019).

    [22] Yang Z Y, Chen J H, Yao J J et al. Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo[J]. Optics Express, 22, 1500-1511(2014). http://www.ncbi.nlm.nih.gov/pubmed/24515157

    [23] Meiburger M, Nam Y, Chung E et al. Skeletonization algorithm-based blood vessel quantification using in vivo 3D photoacoustic imaging[J]. Physics in Medicine and Biology, 61, 7994-8009(2016). http://europepmc.org/abstract/MED/27779138

    [24] Li Q, Li L, Yu T H et al. Vascular tree extraction for photoacoustic microscopy and imaging of cat primary visual cortex[J]. Journal of Biophotonics, 10, 780-791(2017). http://onlinelibrary.wiley.com/doi/10.1002/jbio.201600150/pdf

    [25] Zhao H, Wang G, Lin R. et al. Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo[J]. Journal of Biomedical Optics, 23, 046006(2018). http://www.ncbi.nlm.nih.gov/pubmed/29687685

    [26] Jain R K. Barriers to drug delivery in solid tumors[J]. Scientific American, 271, 58-65(1994). http://www.ncbi.nlm.nih.gov/pubmed/8066425

    [27] Baish J W, Jain R K. Fractals and cancer[J]. Cancer Research, 60, 3683-3688(2000).

    [28] Jain R K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy[J]. Science, 307, 58-62(2005). http://www.tandfonline.com/servlet/linkout?suffix=CIT0051&dbid=8&doi=10.1586%2F17512433.2.2.173&key=15637262

    Chen Ningbo, Zhou Huichao, Zhao Huangxuan, Wang Boquan, Song Liang, Liu Chengbo, Zhang Jianhui. High-Resolution Photoacoustic Quantitative Imaging of Tumor Vessels[J]. Chinese Journal of Lasers, 2019, 46(9): 907001
    Download Citation